Math 608 - Spring 2025 Homework 2 29 January 2025

Read sections 4.3, 4.4, and 4.5. Pay particular attention to Theorem 4.29(c) (we did not do this in class), Lemma 4.32, and Propositions 4.38 and 4.40.

1. If *X* has the weak topology generated by a family \mathcal{F} of functions, then $\langle x_{\alpha} \rangle$ converges to $x \in X$ if and only if $\langle f(x_{\alpha}) \rangle$ converges to f(x) for all $f \in \mathcal{F}$. (In particular, if $X = \prod_{\beta \in B} X_{\beta}$, then $x_{\alpha} \to x$ if and only if $\pi_{\beta}(x_{\alpha}) \to \pi_{\beta}(x)$ for each $\beta \in B$.)

2. Let *X* be a set and *A* the collection of all finite subsets of *X*, directed by inclusion. Let $f : X \to \mathbb{R}$ be an arbitrary function, and for $A \in \mathcal{A}$, let $z_A = \sum_{x \in A} f(x)$. Show that the net $\langle z_A \rangle$ converges in \mathbb{R} if and only if $\{x : f(x) \neq 0\}$ is a countable set $\{x_n\}_{n \in \mathbb{N}}$ and $\sum_{n=1}^{\infty} |f(x_n)| < \infty$, in which case $z_A \to \sum_{n=1}^{\infty} f(x_n)$.

3. Suppose that (X, \mathcal{T}) is a compact Hausdorff space and \mathcal{T}' is another topology on *X*. If \mathcal{T}' is strictly stronger than \mathcal{T} hen (X, \mathcal{T}') is Hausdorff but not compact. If \mathcal{T}' is strictly weaker than \mathcal{T} , then (X, \mathcal{T}') is compact but not Hausdorff.

4. Let *X* be a locally compact Hausdorff space. Consider $X^* = X \cup \{\infty\}$, where ∞ is a point not in *X*. Call $O \subset X^*$ open if either $\infty \notin O$ and *O* is open in *X* or $\infty \in O$ and $X^* \setminus O$ is compact. Prove that X^* is a compact Hausdorff space; it is called the (Alexandroff) one-point compactification of *X*.

5. If *X* and *Y* are topological spaces, $\phi \in C(X, Y)$ is called *proper* if $\phi^{-1}(K)$ is compact in *X* for every compact $K \subset Y$. Suppose *X* and *Y* are locally compact Hausdorff spaces and *X*^{*} and *Y*^{*} are their one-point compactifications. Show that if $\phi \in C(X, Y)$, then ϕ is proper if and only if ϕ extends continuously to a map from *X*^{*} to *Y*^{*} by setting $\phi(\infty_X) = \infty_Y$.

Quiz 2 Throughout this problem, if a result was proven in the text or in class, you can just refer to it. Let *X* be a locally compact Hausdorff space. Recall that on $\mathbb{C}^X = \{f : X \to \mathbb{C}\}$, the topology of uniform convergence on compact sets is defined by the base

$$U_{g,n,K} = \left\{ f \in \mathbb{C}^X : \left\| f - g \right\|_u = \sup_{x \in K} |f(x) - g(x)| < \frac{1}{n} \right\},\$$

for $n \in \mathbb{N}$, $g \in \mathbb{C}^X$, and $K \subset X$ compact.

- (a) Prove that this is in fact a base for a topology.
- (b) Let $(f_{\alpha})_{\alpha \in A} \subset \mathbb{C}^X$ be a net. Show that $f_{\alpha} \to f$ in this topology if and only if for all $K \subset X$ compact, the net of real numbers $\sup_{x \in K} |f_{\alpha}(x) f(x)| \to 0$. For the remaining parts of the problem, we take $X = \mathbb{C}$.
- (c) Consider $\mathbb{C}^{\mathbb{C}} = \{f : \mathbb{C} \to \mathbb{C}\}$ with the metric

$$\rho(f,g) = \sum_{k=1}^{\infty} 2^{-k} \min\left(\sup_{|z| \le k} |f(z) - g(z)|, 1 \right).$$

(You do not need to prove this is a metric.) Prove that the topology induced by this metric is the topology of uniform convergence on compact sets.

- (d) For $X = \mathbb{C}$, in part (b), the convergence of nets can be replaced with the convergence of sequences. (Hint: This almost immediate.)
- (e) Why couldn't we have used

$$\rho'(f,g) = \sum_{k=1}^{\infty} 2^{-k} \sup_{|z| \le k} |f(z) - g(z)|?$$

Additional practice problems Chapter 4, problems 37, 43, 52.