Read sections 4.5, 4.6, and 4.7.

1. If a result was proven in the text or in class you can just refer to it. Let *X* be a first countable topological space. Show that the following are equivalent:

- i. X is *countably* compact (i.e., every countable open cover has a finite subcover).
- ii. Every sequence in *X* has an accumulation point.
- iii. Every sequence in X has a convergent subsequence.

2.

- (a) If *X* is compact Hausdorff and $U \subset X$ is open, show that *U* is locally compact in the relative topology.
- (b) Show that if *E* is locally compact Hausdorff, there is a *compact* Hausdorff space *X* so that *E* is homeomorphic to an open subset of *X*. (Hint: you already know this!)
- **3.** Let $K \in C([0,1] \times [0,1])$. Define the integral operator

$$(Tf)(x) = \int_0^1 K(x, y) f(y) \, dy.$$

- (a) Show that $T : C([0,1]) \to C([0,1])$.
- (b) Show that in fact *T* is a *compact operator*, in the sense that the image $\{Tf : ||f||_u \le 1\}$ of the closed unit ball is precompact.

4. Consider $X = \mathbb{R}$ with the discrete topology and let $X^* = X \cup \{\infty\}$ be its one-point compactification.

- (a) Describe the open sets in X^* . Hint: first determine the compact subsets of *X*.
- (b) Describe $C(X^*)$.

5. Suppose *X* is a topological space for which there is a collection of continuous real-valued functions that separates points in *X*. Show *X* must be Hausdorff.

Quiz 3 Prove the exercise we need to finish the proof of Stone–Weierstrass. In other words, show there are numbers a_n so that the partial sums $\sum_{n=0}^{N} a_n t^n$ converge uniformly to $(1-t)^{1/2}$ for $0 \le t \le 1$. (Hints: Show that the Maclaurin series for $(1-t)^{1/2}$ is $a_0 = 1$ and $a_n = \frac{(2n-2)!}{2^n n((n-1)!)^2}$. Use Stirling's approximation to show that these are comparable to $1/n^{3/2}$ for large n and then use familiar results from calculus to show that the series converges uniformly. Show that the function it converges to satisfies f(t) = -2(1-t)f'(t) and hence must be $(1-t)^{1/2}$.)

Additional practice problems Problems 4.52, 4.61, 4.64, 4.68.