Math 608 - Spring 2025 Homework 6 26 February 2025

Read sections 5.3, 5.4, 5.5.

In problems 2–5 below, note that $\ell^{\infty}(\mathbb{N})$ and $\ell^{1}(\mathbb{N})$ can be regarded as $L^{\infty}(\mu)$ and $L^{1}(\mu)$, respectively, where μ denotes counting measure on \mathbb{N} .

1. Prove that \mathcal{P} , the set of all polynomials, regarded as a subset of $C^0([0,1])$, is meager (first category) in this space.

2. Let $\ell^{\infty}(\mathbb{N})$ denote the set of bounded sequences $\mathbb{N} \to \mathbb{C}$ equipped with $\|\cdot\|_{\infty}$, where

$$\|(a_n)_{n\in\mathbb{N}}\|_{\infty}=\sup_{n\in\mathbb{N}}|a_n|.$$

- (a) Show that $\|\cdot\|_{\infty}$ is a norm.
- (b) Let $c = \{(a_n) \in \ell^{\infty}(\mathbb{N}) : \lim_{n \to \infty} a_n \text{ exists}\}$. Show that *c* is a closed subspace of $\ell^{\infty}(\mathbb{N})$.
- (c) For $(a_n) \in c$, let $f((a_n)) = \lim_{n \to \infty} a_n$. Show that f is a bounded linear functional on c and conclude that there is a bounded linear functional on $\ell^{\infty}(\mathbb{N})$ extending f.

3. Let $\ell^{\infty}(\mathbb{N})$ be as in the previous problem and let $\ell^{1}(\mathbb{N})$ denote the space of absolutely summable sequences $a_{n} : \mathbb{N} \to \mathbb{C}$ equipped with $\|\cdot\|_{1}$, where

$$\|(a_n)_{n\in\mathbb{N}}\|_1=\sum_{n\in\mathbb{N}}|a_n|.$$

(You do not have to show it is a norm this time.)

- (a) Show that any $(b_n) \in \ell^{\infty}(\mathbb{N})$ gives a bounded linear functional in $(\ell^1(\mathbb{N}))^*$ by $(a_n) \mapsto \sum a_n b_n$ and that the norm of this linear functional is $||(b_n)||_{\infty}$.
- (b) Show that every element of $(\ell^1(\mathbb{N}))^*$ is obtained this way, i.e., $(\ell^1(\mathbb{N}))^* = \ell^{\infty}(\mathbb{N})$.
- (c) Use the last part of the previous problem to show that $(\ell^{\infty}(\mathbb{N}))^* \neq \ell^1(\mathbb{N})$ (and hence $\ell^1(\mathbb{N})$ is not reflexive).
- 4. With notation as in the previous two problems:
- (a) Show that *c* and $\ell^1(\mathbb{N})$ are separable.
- (b) Show that $\ell^{\infty}(\mathbb{N})$ is not. (This gives an alternative proof that $\ell^{1}(\mathbb{N})$ is not reflexive.)

5. Let $Y = \ell^1(\mathbb{N})$ and X denote the set of $(a_n) \in Y$ so that $\sum_{n=1}^{\infty} n |a_n| < \infty$ equipped with the ℓ^1 norm.

- (a) Show that *X* is a proper, dense subspace of *Y* and hence is not complete.
- (b) Let $T : X \to Y$ be given by $T((a_n)) = (na_n)$. Show that *T* is closed but not bounded.
- (c) Let $S = T^{-1}$. Show $S : Y \to X$ is bounded and surjective but not open.

Quiz 6 Suppose that *X* and *Y* are normed vector spaces and $T \in \mathcal{L}(X, Y)$.

- (a) Define (the *adjoint* or *transpose*) $T^* : Y^* \to X^*$ by $T^*(f) = f \circ T$. Show $T^* \in \mathcal{L}(Y^*, X^*)$ and $||T^*|| = ||T||$.
- (b) Applying the construction twice we get $T^{**} \in \mathcal{L}(X^{**}, Y^{**})$. If *X* and *Y* are identified with their natural images \widehat{X} and \widehat{Y} in X^{**} and Y^{**} , respectively, show that $T^{**}|_X = T$.
- (c) Show that T^* is injective if and only if the range of *T* is dense in *Y*.
- (d) Show that if the range of T^* is dense in X^* then T is injective and that the converse is true if X is reflexive.

Challenge. Not to be turned in. Let *f* be an infinitely differentiable on I = [0, 1]. Suppose that for every $x \in I$ there exists an n(x) so that the derivative $f^{(n)}(x) = 0$. Prove that *f* must be a polynomial.

Additional practice problems Chapter 5: 20, 21, 24, 35.