Read sections 5.4, 5.5.

1. Let f_n be a sequence of continuous real-valued functions on [0, 1] so that for each $x \in [0, 1]$ there is an $n_x \in \mathbb{N}$ so that $f_n(x) \ge 0$ for all $n \ge n_x$. Show there is a non-empty open interval I and an $N \in \mathbb{N}$ so that $f_n(x) \ge 0$ for all $x \in I$ and $n \ge N$.

2. Let $T : X \to Y$ be a surjective linear map between Banach spaces and suppose there is a $\lambda > 0$ so that $||Tx|| \ge \lambda ||x||$ for all $x \in X$. Show that *T* is bounded.

3. Let *X* be a normed vector space over $K = \mathbb{R}$ or $K = \mathbb{C}$.

(a) If $Y \subset X$ is a closed subspace and $x \in X \setminus Y$, show Y + Kx is closed.

(b) Show that every finite-dimensional subspace of *X* is closed.

4. Show that every finite-dimensional subspace *Y* of a normed space *X* admits a topological complement. In other words, show there is a closed subspace $Z \subset X$ so that $Y \cap Z = \{0\}$ and Y + Z = X. (Hint: Choose a basis for *Y* and use functionals "dual" to each of these basis vectors.)

5. Let *X* and *Y* be Banach spaces and let T_n be a sequence in $\mathcal{L}(X, Y)$ so that $\lim_n T_n x$ exists for each $x \in X$. Let $Tx = \lim_n T_n x$. Show $T \in \mathcal{L}(X, Y)$.

Quiz 7 In this problem we let $C^{\infty}(\mathbb{S}^1) = C^{\infty}(\mathbb{R}/2\pi\mathbb{Z}) = \{f \in C^{\infty}(\mathbb{R}) \mid f(x+2\pi) = f(x) \text{ for all } x \in \mathbb{R}\}$ denote the space of infinitely differentiable functions on the unit circle. Endow it with the structure of a Fréchet space using the norms

$$\|f\|_{C^k} = \sum_{j=0}^k \left\|f^{(j)}\right\|_{u}$$

Let $\mathcal{D}'(\mathbb{S}^1)$ denote the topological dual of $C^{\infty}(\mathbb{S}^1)$. One typically calls elements of $\mathcal{D}'(\mathbb{S}^1)$ distributions. Let $\overline{i} : L^1(\mathbb{S}^1) \to \mathcal{D}'(\mathbb{S}^1)$ be the 'inclusion map'

$$\overline{\mathbf{i}}(\phi)(\psi) = \int_{\mathbb{S}^1} \phi \psi,$$

for $\phi \in L^1(\mathbb{S}^1)$ and $\psi \in C^{\infty}(\mathbb{S}^1)$.

- (a) Show that \bar{i} indeed maps into $\mathcal{D}'(\mathbb{S}^1)$, is injective, and is continuous. (We can therefore regard $L^1(\mathbb{S}^1)$ as a subset of $\mathcal{D}'(\mathbb{S}^1)$.)
- (b) Let $i = \overline{i}|_{C^{\infty}(\mathbb{S}^1)}$. Show that $i : C^{\infty}(\mathbb{S}^1) \to \mathcal{D}'(\mathbb{S}^1)$ is continuous.
- (c) Show that $\frac{d}{dx} : C^{\infty}(\mathbb{S}^1) \to C^{\infty}(\mathbb{S}^1)$ has a continuous extension to a map $\frac{d}{dx} : \mathcal{D}'(\mathbb{S}^1) \to \mathcal{D}'(\mathbb{S}^1)$, given by

$$\left(\frac{d}{dx}u\right)(\phi) = -u\left(\frac{d\phi}{dx}\right),$$

where $u \in \mathcal{D}'(\mathbb{S}^1)$, $\phi \in C^{\infty}(\mathbb{S}^1)$. (Thus, every distribution, and in particular every L^1 function, can be differentiated arbitrarily many times in the sense of distributions.)

Additional practice problems 5.37, 5.45.