Read section 5.5.

- **1.** Suppose *V* is an inner product space either over \mathbb{R} or over \mathbb{C} .
- (a) Prove that the inner product can be recovered from the norm by the polarization identity:

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$$

if the field is \mathbb{R} , and

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right) - \frac{i}{4} \left(\|x + iy\|^2 - \|x - iy\|^2 \right)$$

if the field is C.

(b) Prove that a normed vector space (*V*, ||●||) is an inner product space (with the induced norm being ||●||) if and only if the norm satisfies the parallelogram law:

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2})$$

for all $x, y \in V$.

(c) Conclude that for $1 \le p < \infty$, $p \ne 2$, the standard norms on $\ell^p(\mathbb{N})$ and $L^p(\mathbb{R})$ do not arise from inner products. *^a*

^{*a*}Recall or learn for first time that $\ell^p(\mathbb{N})$ is the space of complex valued sequences (a_n) with $\sum |a_n|^p < \infty$ and has norm $||(a_n)||_{\ell^p} = (\sum_{n=1}^{\infty} |a_n|^p)^{1/p}$. Similarly $L^p(\mathbb{R})$ consists of those measurable functions (up to equality almost everywhere) with $\int_{\mathbb{R}} |f|^p < \infty$ and norm given by $||f||_{L^p} = (\int |f|^p)^{1/p}$.

2. Let *V* be an inner product space, and $\{x_n\}_{n=1}^N$ be an orthonormal set. Prove that

$$\left\|x-\sum_{n=1}^N c_n x_n\right\|$$

is minimized by choosing $c_n = \langle x, x_n \rangle$.

3. Let *M* be any linear subspace of a Hilbert space \mathcal{H} . Prove that M^{\perp} is a closed linear subspace and that $\overline{M} = (M^{\perp})^{\perp}$, with the bar denoting closure.

For the next two problems, we let $C_p^1([0, 2\pi])$ denote the space of 2π -periodic continuously differentiable functions on \mathbb{R} . For $n \in \mathbb{Z}$, we also let $e_n(x) = \frac{e^{inx}}{\sqrt{2\pi}}$.

- **4.** Suppose $f \in C_p^1([0, 2\pi])$ and let $c_n = \langle f, e_n \rangle$ and $b_n = \langle f', e_n \rangle$.
- (a) Prove that $\sum |b_n|^2 < \infty$ and conclude that $\sum n^2 |c_n|^2 < \infty$.
- (b) Prove that $\sum |c_n| < \infty$.
- (c) Prove that $\sum_{n=-M}^{M} c_n e_n(x)$ is uniformly convergent as $M \to \infty$.
- **5.** Let f, c_n , and b_n be as in the previous problem.

(a) Let $S_N(f) = \sum_{n=-N}^N c_n e_n(x)$. Prove that

$$(S_N f)(\theta) = \frac{1}{2\pi} \int_0^{2\pi} f(\theta + x) \frac{\sin\left(\left(N + \frac{1}{2}\right)x\right)}{\sin(x/2)} dx.$$

(The 2π -periodic function

$$K_N(x) = \frac{\sin\left(\left(N + \frac{1}{2}\right)x\right)}{\sin(x/2)} = \sum_{n=-N}^N e^{inx}$$

is known as the Dirichlet kernel.)

(b) Using that $\frac{1}{2\pi} \int_0^{2\pi} K_N(x) \, dx = 1$, show that for $f \in C_p^1([0, 2\pi])$,

$$f(\theta) - S_N f(\theta) = \left\langle g_{\theta}, \frac{1}{\sqrt{\pi}} \sin\left(\left(N + \frac{1}{2}\right) x\right) \right\rangle,$$

where $g_{\theta}(x) = \frac{f(\theta+x)-f(\theta)}{2\sqrt{\pi}\sin(x/2)}$, and that $g_{\theta} \in C^0([0, 2\pi])$.

(c) Using that $\frac{1}{\sqrt{\pi}} \sin\left(\left(N + \frac{1}{2}\right)x\right)$, N = 0, 1, 2, ..., is an orthonormal set in $L^2([0, 2\pi])$, show that $S_N f(\theta) \to f(\theta)$, and conclude that the Fourier series of $f \in C_p^1([0, 2\pi])$ converges uniformly to f.

Quiz 8 Suppose that *X* is a Banach space.

- (a) The norm-closed unit ball $B = \{x \in X : ||x|| \le 1\}$ is also weakly closed. (Hint: Use Theorem 5.8d from your text.)
- (b) If $E \subset X$ is bounded with respect to the norm, so is its weak closure.
- (c) If $F \subset X^*$ is bounded with respect to the norm, so is its weak-* closure.
- (d) Every weak-* Cauchy sequence in X* converges. (Use exercise 5 from homework 7.)

(Note that part (a) above should be at least a little surprising, since the weak topology is generally weaker than the norm topology, so you do not typically expect norm-closed sets to be weakly closed.)