Math 608 - Spring 2025 Homework 11 9 April 2025

1. Let $1 \le p < r \le \infty$. Show that $L^p \cap L^r$ is a Banach space with norm $||f|| = ||f||_p + ||f||_r$.

2. Let $1 \le p < r \le \infty$. Show that $L^p + L^r$ is a Banach space with norm $\|f\| = \inf \left\{ \|g\|_p + \|h\|_r \mid g \in L^p, h \in L^r, f = g + h \right\}.$

3. Suppose $0 . Show that <math>L^p$ is not contained in L^q if and only if X contains sets of arbitrarily small positive measure. (Hint for the 'if' direction: you can find a disjoint sequence E_n with $0 < \mu(E_n) < 2^{-n}$, then consider $\sum a_n \chi_{E_n}$ for some a_n .)

4. Suppose $0 . Show that <math>L^q$ is not contained in L^p if and only if X contains sets of arbitrarily large positive measure. (Hint for 'if' direction: you can find a disjoint sequence E_n with $1 \le \mu(E_n) < \infty$ and consider a similar sum as in the previous problem.)

5. Let $f \in L^p \cap L^\infty$ for some $p < \infty$. You know already that then $f \in L^q$ for all q > p. Show that $||f||_{\infty} = \lim_{q \to \infty} ||f||_q$.

Quiz 11 Prove that any weakly convergent sequence in ℓ^1 is also norm convergent.