1. Show that $L^{\infty}(\mathbb{R}^n)$ (with Lebesgue measure) is not separable.

2. Suppose μ is a semifinite measure, $q < \infty$,

$$M_q(g) = \sup\left\{ \left| \int fg \right| : f \text{ simple, measurable, } \mu(\{f \neq 0\}) < \infty, \|f\|_p = 1 \right\} < \infty.$$

Show that $\{x : |g(x)| > \epsilon\}$ has finite measure for all $\epsilon > 0$ and hence $\{g \neq 0\}$ is σ -finite.

3. Suppose $f_n \in L^p$, $1 , <math>\sup_n ||f_n||_p < \infty$, and $f_n \to f$ almost everywhere. Show that $f_n \to f$ weakly in L^p .

4. Let k(x, y) be the function on $[0, 1] \times [0, 1]$ given by

$$k(x,y) = \begin{cases} \frac{1}{y} & x < y \le 1\\ 0 & 0 \le y \le x \end{cases}.$$

Let $Tf(x) = \int_0^1 k(x, y) f(y) dy$. Show that $T : L^2([0, 1]) \to L^2([0, 1])$ is bounded. (Hint: Schur's test)

5. Suppose *X* and *Y* are σ -finite measure spaces and $K \in L^2(X \times Y)$. For $f \in L^2(Y)$, let $Tf(x) = \int_Y K(x,y)f(y) dv(y)$. Show that $Tf \in L^2(X)$ for $f \in L^2(Y)$ and that $||T||_{L^2 \to L^2} \leq ||K||_2$.

Quiz 12 Consider the operator *M* defined by multiplication by *x*, i.e., (Mf)(x) = xf(x), acting on various different spaces of functions on subsets of the real line.

- (a) Let $J \subset \mathbb{R}$ be either a bounded interval [a, b] or a half-line $(-\infty, a]$ or $[a, \infty)$, or else the entire line \mathbb{R} . Prove that *M* is a bounded operator on $L^p(J)$, $1 \le p < \infty$, if and only if *J* is a bounded interval.
- (b) Let J = [0, 1]. Show that the range of $M : C(J) \to C(J)$ lies in a proper closed subspace. Is this range closed?