- **1.** Suppose μ is a Radon measure on a locally compact Hausdorff space *X*.
- (a) Let *N* be the union of all open $U \subset X$ so that $\mu(U) = 0$. Show that *N* is open and $\mu(N) = 0$. (The complement of *N* is called the support of μ .)
- (b) Show that *x* is in the support of μ (i.e., in $X \setminus N$) if and only if $\int f d\mu > 0$ for every $f \in C_c(X, [0, 1])$ with f(x) > 0.

2. Suppose *X* is a locally compact Hausdorff space. Recall that a G_{δ} set is the countable intersection of open sets.

- (a) Show that if $f \in C_c(X, [0, \infty))$, then $f^{-1}([a, \infty))$ is a compact G_{δ} set for all a > 0.
- (b) If $K \subset X$ is a compact G_{δ} set, show there exists $f \in C_c(X, [0, \infty))$ so that $K = f^{-1}(\{1\})$. (Hint: Use Urysohn's lemma for LCH spaces. Also, if you want to combine an infinite family of continuous functions into a continuous function you can sometimes take a weighted average $\sum 2^{-n} f_n$.)

3. Suppose X is a locally compact Hausdorff space. The *Baire sets* are those in the σ -algebra \mathcal{B}^0_X generated by $C_c(X)$. (In other words, \mathcal{B}^0_X is the smallest σ -algebra with respect to which all $f \in C_c(X)$ are measurable functions.) Show that \mathcal{B}^0_X is the σ -algebra generated by the compact G_{δ} sets.

- **4.** Suppose *X* is a second countable locally compact Hausdorff space.
- (a) Show that every compact subset of *X* is a G_{δ} set.
- (b) Show that $\mathcal{B}_X^0 = \mathcal{B}_X$ (recall that this latter σ -algebra is the Borel σ -algebra, i.e., the one generated by open sets.) (Hint: You may use without proof that every open set in a second countable LCH space is σ -compact.)
- 5. Let *X* be an uncountable set with the discrete topology. Show that $\mathcal{B}_X \neq \mathcal{B}_X^0$.

Quiz 13 Suppose that $f_n \in C([0,1])$ is a bounded sequence. Show that $f_n \to 0$ weakly if and only if $f_n(x) \to 0$ for all $x \in [0,1]$. (You may use without proof a result we haven't finished proving yet, namely, that the dual of C([0,1]) is the space of signed or complex Radon measures on [0,1].)