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Abstract. We construct the causal (forward/backward) propagators for the massive Klein-
Gordon equation perturbed by a first order operator which decays in space but not neces-
sarily in time. In particular, we obtain global estimates for forward/backward solutions to
the inhomogeneous, perturbed Klein-Gordon equation, including in the presence of bound
states of the limiting spatial Hamiltonians.

To this end, we prove propagation of singularities estimates in all regions of infinity
(spatial, null, and causal) and use the estimates to prove that the Klein-Gordon operator
is an invertible mapping between adapted weighted Sobolev spaces. This builds off work
of Vasy in which inverses of hyperbolic PDEs are obtained via construction of a Fredholm
mapping problem using radial points propagation estimates. To deal with the presence of a
perturbation which persists in time, we employ a class of pseudodifferential operators first
explored in Vasy’s many-body work.
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1. Introduction

We consider the inhomogeneous Klein–Gordon equation on Rn+1 = Rt × Rn
z with coordi-

nates (t, z): [
D2
t − (∆ +m2 + V )

]
u(t, z) = f(t, z)(1.1)

where Dt = −i∂t, Dzj = −i∂zj , ∆ = Dz · Dz is the positive Laplacian, m ∈ R,m > 0, and
V = V (t, z) is a smooth, real-valued potential function with spatial decay. In this paper we
give quantitative estimates in phase space for the solution u to (1.1) in terms of the forcing
f in all regions of spacetime infinity. We use these phase space estimates to provide a novel
construction of the causal (forward/backward) propagators G+/−.

To give a simplified version of our results, consider V = V (z) ∈ S−2(Rn
z ;R), meaning V

is real-valued and decays like 1/|z|2 with corresponding derivative estimates. If the spatial
1
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Hamiltonian in equation (1.1) is positive and ∆ + V has no eigenvalue or resonance at 0,
then, letting χ<0(t) be a smooth cutoff to t < 0, we have, for any ϵ > 0,

∥
(
⟨t, z⟩−1/2−ϵ + χ<0(t)⟨t, z⟩−1/2+ϵ

)
G+f(t, z)∥H1(Rn+1) ≤ C∥⟨t, z⟩1/2+ϵf(t, z)∥L2(Rn+1).

Such an estimate gives a global spacetime weighted H1(Rn+1) bound for the forward solution
u+ = G+f in terms of a corresponding weighted L2(Rn+1) norm of the source f , with weight
depending on the time direction; faster growth is allowed in the t→ +∞ region, with slower
growth as t → −∞, relative to a ⟨t, z⟩1/2 threshold. This estimate is refined substantially
in Theorem 1.1, below, in which we prove finer mapping properties for G+/− in a wider
class of spaces with variable order spacetime weights and arbitrary differential orders. The
theorem applies to a large class of Klein-Gordon operators which are asymptotically static
and non-trapping.

By a “global” solution to (1.1), we mean one for which both the forcing f(t, z) and the
solution u(t, z) are defined on the whole of the spacetime Rn+1

t,z . In this work, we study
primarily the two special solutions operators (i.e. propagators) to (1.1) which exhibit tem-
poral causality, namely the forward and backward propagators G+/−. These define global
solutions u+/− = G+/−f with the property that they propagate solutions in the forward (+)
or backward (−) time directions, meaning, for example for G+, that

(1.2) supp f ⊂ {t ≥ T} =⇒ suppG+f ⊂ {t ≥ T} .
Our main results on the causal propagators are Theorem 8.2, Theorem 8.3, and Theo-

rem 8.4 below. We give a simplified version of these theorems now, assuming that

V = V0(z) + V1(t, z)

where V0 ∈ S−1(Rn;R) and V1 ∈ C∞(Rn+1;R) a perturbation which is Schwartz in space
and decaying in time: ∣∣∂αz ∂jtV1(t, z)∣∣ ≤ C⟨t⟩−1−j⟨z⟩−N
for any j ∈ N0, multiindex α ∈ Nn

0 and N ∈ R and some C depending on j and N .
The assumptions in the theorem pertain to the spectral properties of the limiting spatial
Hamiltonian

HV0 = ∆+m2 + V0(z).

Namely, if V ≡ V0(z) is static, we assume only that 0 is not an eigenvalue of HV0 (see
Theorem 8.4). Otherwise if V1 is non-zero, we assume that HV0 ≥ c > 0, i.e. the limiting
Hamiltonian HV0 is strictly positive. We assume in all cases that the spectrum of HV0 is
strictly absolutely continuous near [m2,∞). If V0 ∈ S−2, then this is implied by the absence
of eigenvalues or resonances for ∆ + V0 at 0.

Theorem 1.1. With V as above the forward propagator exists as a mapping between weighted
L2-based Sobolev spaces: for any ϵ > 0, s ∈ R,

G+ : ⟨t, z⟩−1/2−ϵHs−1(Rn+1
t,z ) −→ ⟨t, z⟩1/2+ϵHs(Rn+1

t,z ).

Moreover, if a spacetime function (see Section 2.8 for details)

ℓ+(t, z) ∈ S0
cl(Rn+1

t,z ;R)
satisfies

(1) ℓ+ < −1/2 in a neighborhood of future causal (timelike) infinity (i.e. in t≫ 0, |z/t| <
1 + ϵ for small ϵ > 0),
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(2) ℓ+ > −1/2 in a neighborhood of past causal (timelike) infinity (i.e. in t ≪ 0, |z/t| <
1 + ϵ for small ϵ > 0),

(3) ℓ+ is monotone decreasing along future-directed null rays,
(4) ℓ+ is constant in a neighborhood of causal infinity,

then G+ extends to a bounded operator

G+ : ⟨t, z⟩ℓ+(t,z)+1Hs−1(Rn+1
t,z ) −→ ⟨t, z⟩ℓ+(t,z)Hs(Rn+1

t,z ) .

In particular, the weight ℓ+ can be taken arbitrarily high away from future causal infinity,
yielding additional decay if f has additional decay.

The analogous statements are true for the backward propagator G−, where now ℓ− < −1/2
in a neighborhood of past causal infinity, ℓ− > −1/2 in a neighborhood of future causal
infinity, and monotone decreasing on past-directed null rays.

One of the main features of our approach is that it applies to perturbations of free Klein-
Gordon within a large class of operators which limit to static potentials V± = V±(z) as
t → ±∞. In particular, there is no need for the limiting potentials V± to be equal to each
other as they are in Theorem 1.1. Though we allow more general V below, to fix the idea we
begin by assuming that V = V (t, z) is a smooth potential function with rapid spatial decay
and smooth time dependence, approaching a static potential as t→ ±∞:

V (t, z) ∈ C∞(Rt;S(Rn
z )), and V (t, z)− V±(z) = O(|t|−1) as t→ ±∞,

and corresponding derivative estimates. The influence of the perturbation V on the analysis
being the main object of study, we define the operator with explicit dependence on V :

PV := D2
t −HV = D2

t − (∆ +m2 + V ) .(1.3)

In fact, we can allow V to be a differential operator of order 1 with symbolic behavior in z.
Below in Section 3.4, we construct a compactification of spacetime on which V is smooth,
and this global smoothness condition is more general than the assumptions above. We can
also allow □gmink

= D2
t − ∆ to be replaced by the d’Alembertian □g of a non-trapping,

globally hyperbolic, asymptotically Minkowski metric g as described in prior work on the
massless wave equation [2].

Thanks to a famous result of Klainerman [23], the forward solution u+ = G+f to PV u+ =
f with a sufficiently smooth and decaying source f is known to lie in t−n/2L∞(Rn+1) ⊂
⟨t, z⟩1/2+0L2(Rn+1) near future causal infinity. Our results below refine the L2 statement, in
that they allow us also to localize in frequency space in a neighborhood of the future radial
set, i.e. the limit locus of bicharacteristic rays, a phase space subset over future null infinity
defined below. One upshot is that the frequency-localization of the solution to the radial
set effectively carries all of the asymptotic data of G+f as t → +∞. In other words, there
are frequency localizers Qrad which cut off in phase space to the radial set, such that, for
f ∈ C∞

c (Rn+1),

(1.4) (Id−Qrad)G+f ∈ S(Rn+1), while QradG+f ∈ ⟨t, z⟩1/2+ϵHs(Rn+1)

for any s ∈ R and any ϵ > 0. We prove our result using propagation of singularities and
radial points estimates, as we describe in detail shortly.

Propagator estimates of this type, i.e. global spacetime estimates using L2-based, weighted
Sobolev spaces, were established by Vasy for a large class of “scattering” operators, including
the free Klein-Gordon operator [40]. They are a combination of principal type propagation
of singularities estimates, radial points estimates, and microlocal elliptic estimates proven
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on non-compact regions of phase space. More accurately, they are proven up to and in-
cluding infinity, meaning in phase space regions on a compactified spacetime. Propagation
estimates in the scattering setting were first established by Melrose [32] in the case of the
Helmholtz equation, generalizing Hörmander’s propagation of singularities theorem [22] to
scattering operators on non-compact scattering spaces. Melrose’s paper [32] further intro-
duced the radial point1 propagation estimates (also in the scattering setting). For the free
Klein-Gordon equation (and scattering perturbations thereof) one can use the phase space

picture of Melrose/Vasy, based on the radial compactification X = Rn+1
t,z , a compact space,

diffeomorphic to a closed ball, whose boundary points are the limits of geodesic rays. This
compactification, illustrated in Figure 1, includes spatial and causal infinities as open sub-
sets of the boundary (the shaded piece of the boundary in Figure 1 also represents causal
infinity), while future null infinity and past null infinity are compressed to codimension one
submanifolds of the boundary. The relevant phase space for the free Klein-Gordon, the
scattering cotangent space scT ∗X, has X as the underlying spacetime and the standard τ, ζ
(dual to t, z) momenta. This is described in detail in Section 2.

To understand the phase space nature of the estimates, consider the family of solutions to
the free Klein-Gordon equation P0u = 0 obtained directly by Fourier transformation in the
spatial variable, namely, for g± ∈ C∞

c (Rn), with

û(t, ζ) =
∑
±

e±it
√

|ζ|2+m2
g±(ζ),

let u(t, z) = F−1
z→ζ û(t, ζ). The infinite dimensional space of such u, in regions of the form

|z|/t ≤ c < 1, behave asymptotically as

u = t−n/2
(
a+(z/t)e

−im
√
t2−|z|2 + b+(z/t)e

im
√
t2−|z|2

)
(1 +O(1/t))

as t → +∞ with a+, b+ smooth functions easily computed in terms of the inverse Fourier
transforms of the coefficients g±. Here y = z/t parametrizes future causal infinity. A similar

expression holds as t → −∞. If one denotes the phase function ϕ±(t, z) = ±m
√
t2 − |z|2,

then the radial set over future causal infinity is the subset of phase space defined by

τ = Dtϕ± =
±mt√
t2 − |z|2

, ζ = Dzϕ± =
∓mz√
t2 − |z|2

.

This future radial set is the union of two smooth manifolds in scT ∗
ι+X which extend smoothly

out to the compactified boundary of the fibers in scT
∗
X. Here ι+ denotes future causal

(timelike) infinity. The Qrad in (1.4) can be taken to be the quantization of a cutoff function
supported near this radial set, and, for these simple solutions, the conclusion of (1.4) follows
from stationary phase.

The principal novelty of the current work lies in its treatment, via microlocal methods, of
perturbations V that persist in time, in particular when there is asymptotic time dependence
and separation of variables between time and space cannot be employed directly. If one thinks
of the solutions of (1.1) in terms of their behavior along classical trajectories, then a geodesic

(t0 + sτ, z0 − sζ) with ζ ̸= 0

exits every compact spatial set, and thus as s → ±∞, one expects solutions to behave
asymptotically like those for free Klein-Gordon. However, on timelike trajectories with zero

1As far as the authors know, radial points as such were first studied in [11]
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spatial momentum, the nature of the spatial Hamiltonians ∆ + m2 + V± influences the
asymptotic behavior substantially. The limits of such rays form two special points at causal
infinity, one in the future and one in the past, which we call the “north pole”, NP, and the
“south pole”, SP, and the lion’s share of our work below is in proving estimates near NP
and SP.

In particular, for non-zero V0, the operator PV does not lie in the class of scattering
operators Diffsc(Rn+1) defined by Melrose [32]. However, it does lie in a class of differential
operators studied earlier by Vasy [36, 38] in his treatment of many-body Hamiltonians,
called “3-body” or “many-body” or, as we write more frequently below, 3sc-operators. This
family of operators on RN includes not only many-body Hamiltonians, but also operators
which decompose analogously near a family of collision planes, modeled as submanifolds C
of infinity. In our case, the picture is comparatively simple; we have just one analogue of a
collision plane and it is the straight line z = 0 in Rn+1. For PV , the relevant C that arises
is simply the two poles,

C = NP ∪ SP,

Those two points lying in causal infinity are precisely the points where PV fails to be a
scattering operator. For a description of how these operators, which we follow Vasy in
denoting by Diff3sc(Rn+1), arise in our setting, see Section 3. Correspondingly, we work on
the resolved space [X;C] obtained by blowing up the two poles. This blow-up introduces
two new boundary hypersurfaces, each of which is essentially a copy of Rn

z , and is in fact the
limit locus of geodesics with zero spatial momentum, as depicted in Figure 2.

The result of this 3sc-analysis is a family of non-elliptic Fredholm problems for PV , anal-
ogous to the Fredholm problems on asymptotically hyperbolic spaces established by Vasy
[38]. We prove global estimates on a priori spaces of distributions which satisfy prescribed
asymptotics, above threshold near past causal infinity and below threshold near future causal
infinity. We let

Hs,ℓ
sc (Rn+1) := {u ∈ S ′(Rn+1) : ⟨t, z⟩ℓu ∈ Hs(Rn+1)} , ∥u∥Hs,ℓ

sc
= ∥u∥s,ℓ := ∥⟨t, z⟩ℓu∥Hs .

denote the relevant weighted Sobolev spaces, where ℓ(t, z) is a smooth spacetime weight and
Hs,0

sc (Rn+1) = Hs(Rn+1) is the standard Sobolev space of order s on Rn+1. The a priori
spaces are defined as

X s,ℓ := {u ∈ Hs,ℓ
sc (Rn+1) : PV u ∈ Hs−1,ℓ+1

sc (Rn+1)} , Ys,ℓ := Hs,ℓ
sc (Rn+1)(1.5)

with

∥u∥2X s,ℓ = ∥u∥2s,ℓ + ∥PV u∥2s−1,ℓ+1 .(1.6)

In general, the weight ℓ can have phase space dependence, although for time-persistent V
it must be constant in a neighborhood of C. Genuine phase space dependence is permitted
but not needed in the present paper, though it will play a role in future work. Our con-
struction of the propagators works by first establishing a Fredholm mapping property, and
then proving invertibility of this mapping by proving that the kernel and cokernel are trivial.
The Fredholm property holds more generally than the invertibility, and in that case there
are still causal propagators in the sense that there is a generalized inverse for any Fredholm
map.

Given V , to obtain a Fredholm result (from which invertibility may or may not be con-
cluded) we do not need to assume that the limiting Hamiltonians HV± are positive. Instead,
we assume only that
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(1) HV± = ∆ +m2 + V± has purely absolutely continuous spectrum near [m2,∞), i.e.,
the absolutely continuous spectrum [m2,∞) of HV± is disjoint from the singular and
point spectra, and

(2) HV± has no eigenvalue at 0.

The second assumption avoids the presence of linearly growing modes. In this case we have
that PV is a Fredholm operator between appropriate spaces.

Theorem 1.2. Let V be any of the asymptotically static potentials described in Section 3.4
satisfying the assumptions just described. If ℓ± is a spacetime weight as in Theorem 1.1,
then

PV : X s,ℓ± −→ Ys−1,ℓ±+1

is a Fredholm operator.

Analyzing PV as a 3sc-operator allows us to prove estimates for PV u = f near C. In
accordance with Vasy’s results for many-body Hamiltonians, estimates at C are proven at
each level of the temporal momentum component τ . This is accomplished in particular by
analysis of the so-called indicial operator N̂ff(PV ). Near NP, the indicial operator is the
Fourier transform in time of the limiting operator:

N̂ff(PV )(τ) = τ 2 −∆z −m2 − V+ = τ 2 −HV+ ,

with an analogous indicial operator at SP. This operator’s behavior has three distinct types:

(1) if |τ | > m then τ 2 lies in the continuous spectrum of HV+ ,

(2) if |τ | < m then the operator N̂ff(PV )(τ) is elliptic on Rn in the scattering sense, and
(3) the borderline cases τ = ±m, which is where the radial set lies over NP.

In each of these three cases, we prove a different type of estimate. The three estimates are
analogues of (1) principal type-propagation, (2) elliptic estimates, and (3) radial points esti-
mates. The difference between our estimates and standard scattering propagation estimates
is that over C, frequency localization is local in τ but global in the spatial momentum ζ. As
a result, the principal type propagation and radial points estimates always have assumptions
on the flow on all bicharacteristics passing over C at the relevant τ -level.
In the case |τ0| > m, we prove a principal type propagation estimate of the form “if nothing

comes in then nothing goes out” that appears in Vasy’s original work, described there using
broken geodesics. In other words, if PV u lies in some Hs−1,ℓ+1

sc (Rn+1) when microlocalized
near τ = τ0, and u lies in Hs,ℓ

sc (Rn+1) on all bicharacteristics which flow into NP at τ = τ0,
then u itself lies in Hs,ℓ

sc (Rn+1) at τ = τ0 over NP and satisfies a corresponding estimate.
This estimate is the content of Proposition 6.1.

At τ = ±m, we prove above and below threshold radial point estimates. Below the
threshold decay rate ℓ < −1/2, the estimates mimic principal type estimates, namely if
PV u ∈ Hs−1,ℓ+1

sc microlocally near NP and τ = m and u ∈ Hs,ℓ
sc on all bicharacteristics that

flow into NP at τ = m, then u is microlocally inHs,ℓ
sc at NP and τ = m. On the other hand for

ℓ > −1/2, the above threshold estimate is similar to an elliptic estimate; if PV u ∈ Hs−1,ℓ+1
sc

microlocally near NP and τ = m and u ∈ Hs,ℓ′
sc for ℓ′ ∈ (−1/2, ℓ), then u ∈ Hs,ℓ

sc near NP
and τ = m. We refer to Proposition 7.1 and Proposition 7.2 for details.

The scattering calculus provides a mechanism for frequency localization in τ and ζ uni-
formly up to infinity. In particular, the localizer to the radial set Qrad can be taken to
be a scattering operator of order (0, 0). However, in the 3sc-calculus, operators obtained
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by quantization of ζ-dependent symbols do not have good commutation relations with PV
near C. Therefore, in Vasy’s treatment, frequency localizers include functions of the many-
body Hamiltonian H, i.e., ϕ(H), where ϕ ∈ C∞

c (R). In that case, because H is elliptic,
ϕ(H) is a smoothing pseudodifferential operator. However, in our case, functions ϕ(PV )
are not well-behaved pseudodifferential operators, and we must first compose PV with an
invertible, globally elliptic 3sc-operator and then apply the functional calculus to obtain a
pseudodifferential localizer to the characteristic set. We use, for E ≥ 0 sufficiently large,

Gψ := ψ
(
(D2

t +HV0 + E)−1PV0
)
.

which we show lies in 3scΨ0,0(Rn+1). The fact that Gψ is not smoothing corresponds to the
non-compactness of the characteristic set of P0. We have the commutation relation

[Gψ, PV0 ] = 0

in our commutator construction and for PV this commutation holds to leading order. Fre-
quency localizers over C will be of the form QGψ where Q localizes to a τ -level over C (see
Section 5).

Another novelty of our work is the treatment of large τ at C. For many-body Hamiltoni-
ans, non-compact regions of the non-interacting dual variable lie in the elliptic region, and
are therefore not of direct interest. (It should be noted that a global Fredholm framework
for many-body operators would still need to address these elliptic regions.) In contrast, for
the 3sc formulation of Klein-Gordon, large τ lie in the non-radial part of the characteristic
set and therefore exhibit principal type propagation. To establish propagation of singular-
ities estimates for τ = ±∞, we recognize the indicial family as a semiclassical scattering
differential operator of the form introduced by Vasy–Zworski [41],

N̂ff(PV )(τ) ∈ Ψ2,0,2
scl,sc(R

n),

where the semiclassical parameter is h = ±1/τ , say as τ → ±∞. An attractive picture

emerges, in which the semiclassical principal symbol of N̂ff(PV )(τ) is exactly the restriction
of the scattering principal symbol of PV restricted to an appropriate hypersurface of a fiber
compactified phase space (see Section 4.4).

Similar to Melrose [32] and Vasy [40], we exploit the global structure of the Hamiltonian
flow in which all bicharacteristics flow from two components of the radial set to the other
two; the former act as global sources for the flow and the latter act as sinks. On the
characteristic set away from the radial set, we prove real principal type propagation estimates
along bicharacteristic rays form the Hamiltonian flow. For the free Klein-Gordon operator,
the Hamilton vector field Hp = τ∂t − ζ · ∂z rescales to a smooth vector field on a the

fiber compactification scT
∗
X of the scattering cotangent bundle. There it induces a smooth

extension of the bicharacteristic flow which preserves the characteristic set. The propagator
is the inverse of a Fredholm problem constructed using radial points estimates, as detailed
below in Section 2.8 and 2.9.

As in Vasy [36], the flow we use to analyze PV is the same flow as that for P0. Away
from C, this makes sense immediately since the assumptions on V make it so that PV has
the same scattering principal and subprincipal symbol as P0. At C, as in Vasy [36], we use
that the functional calculus localizers to the characteristic set can be approximated by those
same functions of the corresponding localizers for the free operator. Specifically, we use that,
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under the given assumptions, with Gψ the localizer for PV and Gψ,0 the free localizer, that

N̂ff(Gψ)(τ) and N̂ff(Gψ,0)(τ) have the same semiclassical principal symbol,

which fits nicely below thanks to the semiclassical formulation of the indicial family. This is
discussed in Section 5, together with the basic construction of the commutants that go into
the positive commutator argument.

The mathematical study of the long-time behavior of solutions to massive wave equations
is extensive and dates back at least to the pioneering work of Morawetz–Strauss [34], in which
the authors found one of the first decay results for the Klein–Gordon equation. Quite a bit
more work on the spectral and scattering theory of Klein–Gordon equations ensued, including
the works of Lundberg [29] and Weder [42]. Klainerman’s use of energy techniques [23],
discussed above, is perhaps the result most directly related to the current work. More recent
work has focused on energy decay (such as the works by Kopylova [26] or by Komech and
Kopylova [24, 27] or those described in the survey article of Kopylova [25]), on Strichartz
estimates (such as those by Kubo–Lucente [28]), or on asymptotics for related equations
(such as the work of Bejenaru–Herr [4] for the Dirac equation).

The Fredholm approach to the construction of resolvents and propagators for non-elliptic
operators using radial points estimates and anisotropic spaces is due to Vasy [12, 38, 39], while
the radial points estimates used in his construction are due to Melrose [14, 32]. Adaptation
of the method to more general non-elliptic scattering operators is due to Vasy [40]. Gérard–
Wrochna [10] used the method to construct the Feynman propagator for the Klein–Gordon
equation on asymptotically Minkowski spaces.

There is closely related work on the wave equation on Lorentzian scattering manifolds
due to Baskin–Vasy–Wunsch [2, 3] and Hintz–Vasy [19]. These papers prove not only linear
invertibility properties for the wave equation, but also semilinear results using weighted
global spacetime estimates akin to those above, only there the relevant estimates are b-spaces.
Subsequent work of Hintz and Vasy, which use in particular related microlocal methods
including radial points estimates on non-compact spacetimes, establishes stability properties
in mathematical GR [13, 20]. Use of the radial points estimates in semiclassical analysis
to study resonances on asymptotically hyperbolic manifolds and Pollicot-Ruelle resonances,
[5, 6]. Many of these approaches use anisotropic spaces, as they allow for threshold conditions
to vary between components of the radial set [9].

Ours is not the only recent work in microlocal analysis on hyperbolic PDE which uses
a many-body approach; Hintz has used 3sc-operators, and a related class of 3b-pseudo-
differential operators [15, 16, 17, 18, 21]. Also recently, Sussman [35] has analyzed the
asymptotics of solutions to Klein-Gordon near null infinity. This analysis includes a sub-
stantially more detailed study of solutions near null infinity, where we use only propagation
of singularities estimates.

Outline of the paper. The paper is organized as follows. In Section 2, we analyze the free
Klein-Gordon operator P0, which serves as an instructive model. In doing so, we recall the
relevant features of the scattering calculus, including the global structure of the bicharacter-
istic flow of P0 on the scattering cotangent bundle. We then prove Theorem 1.1 for P0 and
for scattering perturbations of P0. This provides both an outline for our general approach
to analysis of PV and the actual estimates that will be used for PV away from C. In Section
3 we discuss how PV is not a scattering operator in general; it is instead a 3sc-differential
operator, a class which we define and discuss the basic properties of, including the indicial
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operator of PV . In Section 4 we display the basic properties of 3sc-pseudodifferential oper-
ators, including their symbol mappings and quantization, commutators, wavefront sets and
elliptic sets. In Section 4.6 in particular we develop an elliptic theorem of 3sc-operators,
including fiber infinity. Section 5 extends the work of Section 4 to prove functional calculus
statements for non-elliptic 3sc-operators and we compute the symbols of some commutators
which are used in the propagation proofs. In Section 6 and Section 7 we prove the propaga-
tion estimates over the poles C (Section 6 proves the analogue of Hörmander’s theorem and
Section 7 establishes the radial point estimates). Finally, in Section 8, we put the foregoing
work together to prove the existence of propagators using the Fredholm framework discussed
above. In particular the main theorems are proven in this final numbered section. We finally
include an index of notation after the main sections of the paper.
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2. The model case

In this section we prove Theorem 1.1 for the model operator

P0 := D2
t − (∆ +m2).(2.1)

The majority of this work was described by Vasy [40]; we follow that development and then
at the end of the section we describe related settings in which the same proof applies with
minimal modifications.

In the case of P0, the adapted Sobolev spaces are

X s,ℓ = {u ∈ Hs,ℓ
sc : P0u ∈ Hs−1,ℓ+1

sc } , Ys,ℓ = Hs,ℓ
sc ,(2.2)

for smooth function ℓ = ℓ(t, z) ∈ S0
cl(Rn+1). We prove the invertibility of P0 as a bounded

operator between X s,ℓ and Ys−1,ℓ+1 for suitable ℓ.

Theorem 2.1. If s ∈ R and ℓ+ a forward weight,

(2.3) P0 : X s,ℓ+ −→ Ys−1,ℓ++1

is an isomorphism. Its inverse is the forward propagator. The same is true if ℓ+ is replaced
by a backward weight ℓ−, in which case the inverse is the backward propagator.

2.1. Outline. As described in the introduction, the main step in the proof of Theorem 2.1
is to show that P0 and P

∗
0 are Fredholm operators between X s,ℓ and Ys−1,ℓ+1. In particular,

P0 : X s,ℓ −→ Ys−1,ℓ+1 is Fredholm provided we can establish the following two global
estimates:

∥u∥s,ℓ ≤ C (∥P0u∥s−1,ℓ+1 + ∥u∥−N,−M) ,

∥u∥1−s,−1−ℓ ≤ C (∥P ∗
0 u∥−s,−ℓ + ∥u∥−N,−M) ,
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where M,N are sufficiently large that H−N,−M
sc ↪→ Hs,ℓ

sc and H−N,−M
sc ↪→ H1−s,−1−ℓ

sc are
compact. These will hold only for suitable ℓ, and the outline of the estimates here motivates
the choice of the forward and backward weights ℓ± in Section 2.8. Although for the free case
we have P ∗

0 = P0, it is useful to distinguish these as the second estimate above is used to
analyze the cokernel of the Fredholm maps for P0.

The global estimates for P0 and P ∗
0 follow from several types of microlocal estimates. In-

deed, via a microlocal partition of unity, we decompose phase space (the scattering cotangent
bundle, described below) into open sets U where

(1) U localizes to the elliptic set of P0.
(2) U is a neighborhood of a point in the characteristic set of P0 at which the Hamilton

vector field is non-radial. Here we bound u by P0u and Eu, where E microlocalizes
to a neighborhood that is in the past of the Hamiltonian flow, see Proposition 2.6.
This is the typical microlocal propagation of singularities estimate.

(3) U is a neighborhood of a point in the characteristic set of P0 at which the Hamilton
vector field is radial.

We prove estimates in the corresponding regions.

(1) We have microlocal elliptic estimates in Propositions 2.2 and 2.3
(2) In a neighborhood of a point in the characteristic set and away from the radial set,

we bound u by P0u and Eu, where E microlocalizes to a neighborhood that is in
the past of the Hamiltonian flow, see Proposition 2.6. This is the typical microlocal
propagation of singularities estimate.

(3) Near the radial set, we have two different types of estimates: below the decay rate
ℓ < −1/2, we have an estimate that is similar to the propagation of singularities
estimate, see Proposition 2.13. Whereas for ℓ > −1/2, we have an estimate that
mimics the elliptic estimate, but we need to assume that u is a priori above the −1/2
threshold, see Proposition 2.11.

Given these four estimates – elliptic, principal type, and above and below threshold radial
points estimates – we obtain the desired Fredholm estimate for P0 (and, by working with
adjoints, for P ∗

0 ) in the space Hs,ℓ
sc provided that ℓ > −1/2 (to apply the above threshold

estimate) and ℓ < −1/2 (to apply the below threshold estimate). This motivates the use of
a variable weight described below in Section 2.6 and Section 2.8.

In microlocal regions near the radial set we always assume that ℓ is constant, and empha-
size this by denoting it by ℓ.

The rest of this section is devoted stating the estimates together with a sketch of the
proofs and then the proof of Theorem 2.1.

2.2. The scattering calculus. The operator P0 is an element of Melrose’s scattering cal-
culus [32], which quantizes functions of the standard translation-invariant vector fields on
Rn+1. Indeed, the scattering differential operators on a vector space RN are given by

(2.4) L ∈ Diffmsc(RN
w ) ⇐⇒ L =

∑
|α|≤m

aα(w)D
α
w, aα ∈ S0

cl(RN),

where S0
cl(RN) is the space of classical symbols of order zero on RN . Observe that P0 =

D2
t − (∆ +m2) ∈ Diff2

sc(Rn+1). We now describe some relevant features of the scattering
calculus.
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Scattering operators are most easily understood as operators on a compactified space. Here
we use the notation X = Rn+1 for this space, which is the simultaneous radial compactifica-
tion of spacetime. In particular, points on the boundary of X (below simply called “infinity”)
represent the loci of endpoints of geodesics of arbitrary type (timelike/spacelike/null), where
asymptotically parallel geodesics limit to the same point at infinity.

X := Rn+1
t,z = Sn+1

+ .(2.5)

Here X is simply a hemisphere of the unit sphere, Sn+1
+ ; it is a compactification of Rn+1

explicitly via the inclusion

(t, z) 7→ (1, t, z)

⟨t, z⟩ , ⟨t, z⟩ = (1 + t2 + |z|2)1/2

The boundary of Sn+1
+ is diffeomorphic to Sn and is given by

∂Sn+1
+ = {(0, t, z) : t2 + |z|2 = 1} .(2.6)

In particular, a global boundary defining function on X is given by (1 + t2 + |z|2)−1/2
. In

the region where y = z/t is bounded, we may use x = 1/t and y as local coordinates.
The smooth structure on X (as a manifold with boundary) distinguishes the classical

symbols of order zero on Rn+1 as smooth, i.e.,

C∞(X) = S0
cl(Rn+1),

and thus one can rephrase the definition of Diffmsc(Rn+1) by demanding coefficients aα in (2.4)
satisfy

aα ∈ C∞(X).

We also write

Diffmsc(X) = Diffmsc(Rn+1),

and

Diffm,rsc (X) = ⟨t, z⟩r Diffmsc(X).

The space Diffmsc(X) is the universal enveloping algebra of the space of scattering vector
fields Vsc(X) := xVb(X), where x is a total boundary defining function for X and Vb(X)
is the space of vector fields tangent to ∂X [31, 33]. The space of scattering vector fields is
independent of the specific choice of boundary defining function and forms a Lie algebra.
The scattering tangent bundle scTX is the vector bundle whose sections are scattering vector
fields. If (x, y) ∈ R+ × Rn are local coordinates on X with x a boundary defining function,
then scTX is locally spanned over C∞(X) by

{x2∂x, x∂y} .
The dual bundle is the scattering cotangent bundle scT ∗X and it is locally given by{

dx

x2
,
dy

x

}
.

The (total) symbol of a scattering differential operator is best understood as a function
on the doubly compactified phase space

(2.7) scT
∗
X = X × Rn+1

τ,ζ
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where τ, ζ are dual to t, z respectively, and Rn+1
τ,ζ is the radial compactification of the mo-

mentum factor, or, as we will refer to it, the “fiber”, as it is the fiber of the fibration
scT

∗
X −→ X.

We define, for m, r ∈ R,
(2.8) scSm,r(X) = ⟨t, z⟩r⟨τ, ζ⟩mC∞(X × Rn+1)

to be the space of classical scattering symbols of order m, r, and
scΨm,r(Rn+1) = OpL(

scSm,r(Rn+1))

be the (classical) scattering pseudodifferential operators as defined by Melrose [32]. The
principal symbol map, sending OpL(a) = A to the equivalence class of a in

(2.9) jsc,m,r :
scΨm,r −→ scSm,r(X)/scSm−1,r−1(X),

is equivalent to the mapping taking a to its restriction to the boundary of X × Rn+1:

jsc,m,r(A) = ⟨t, z⟩−r⟨τ, ζ⟩−ma|∂(X×Rn+1).

Here ∂(X × Rn+1) is a union of two boundary hypersurfaces (bhs’s), which we denote

(2.10) Csc(X) := (∂X × Rn+1
τ,ζ ) ∪ (X × ∂Rn+1

τ,ζ ) = ∂scT
∗
X.

The boundary hypersurface ∂X ×Rn+1
τ,ζ is “spacetime infinity” while X × ∂Rn+1

τ,ζ is “momen-
tum” or “fiber infinity”. The functions

(2.11) ρbase := ⟨t, z⟩−1 and ρfib := ⟨τ, ζ⟩−1,

are boundary defining functions for spacetime and fiber infinity respectively.
We define

N̂sc,m,r(A) := ⟨t, z⟩−r⟨τ, ζ⟩−ma|
∂X×Rn+1

τ,ζ

,(2.12)

σsc,m,r(A) := ⟨t, z⟩−r⟨τ, ζ⟩−ma|
X×∂Rn+1

τ,ζ

.(2.13)

We have that for all p ∈ ∂X × ∂Rn+1
τ,ζ ,

N̂sc,m,r(A)(p) = σsc,m,r(A)(p) .

Note in particular that the symbol of L in equation (2.4), obtained by replacing Dj
tD

α
z by

τ jζα, is smooth on scT
∗
X after it is multiplied by ⟨τ, ζ⟩−m, and more generally the symbol

of L ∈ Diffm,rsc is smooth on scT
∗
X after it is multiplied by ⟨t, z⟩−r⟨τ, ζ⟩−m.

2.3. Elliptic estimates. We now recall the standard notions of operator wavefront set,
elliptic set, and characteristic set for operators on the scattering calculus, which are useful
in this section as well as in comparison with the corresponding 3sc notions below.

The (scattering) operator wavefront setWF′(A) = WF′
sc(A) ⊂ Csc(X) is the essential

support of the symbol a, where we recall that α ̸∈ ess-supp(a) if an only if there is an open

set U ⊂ X × Rn+1 with α ∈ U such that a is Schwartz in U .
For A ∈ scΨ0,0(X), the (scattering) elliptic set Ell(A) is defined by α ∈ Ell(A) if and

only if σsc,0,0(A)(α) ̸= 0. For A ∈ scΨm,ℓ, α ∈ Ell(A) if and only if σsc,m,ℓ(A) ̸= 0. The
(scattering) characteristic set is the complement of the elliptic set:

Char(A) = Csc(X) \ Ell(A).
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Note that this definition of ellipticity is equivalent to the standard one in which we demand
that, in a neighborhood of α in scT

∗
X, the principal symbol jsc,m,r(A) is bounded below by

|jsc,m,r(A)| ≥ c > 0.

Given α ∈ Ell(A), the standard elliptic parametrix construction holds in the scattering
calculus, and there is B ∈ scΨ−m,−r(X) such that

α ̸∈ WF′(Id−BA) ∪WF′(Id−AB)

and thus we obtain the (scattering) elliptic estimates:

Proposition 2.2 (Corollary 5.5, [40]). Let A ∈ scΨm,r(X). Let B,G ∈ scΨ0,0, and assume
WF′(G) ⊂ Ell(A) and WF′(B) ⊂ Ell(G). Then for any M,N ∈ R, there is a C > 0 such
that

∥Bu∥s,ℓ ≤ C (∥GAu∥s−m,ℓ−r + ∥u∥−N,−M) .

2.4. Variable weight spaces. As discussed briefly at the end of Section 2.1, our Fredholm
estimates require Sobolev spaces with variable growth/decay order ℓ, which we review briefly,
referring to Vasy [40, Sect. 3] for further properties and details. In our discussion of causal
propagators, we require only that ℓ depend on spacetime variables, but we discuss the general
case for completeness.

Suppose ℓ ∈ C∞(scT
∗
X;R), and 0 < δ < 1/2. We define a ∈ Sm,ℓδ (RN

w ) if a ∈ C∞(RN
w ×

RN
θ ) and

|Dα
wD

β
θ a| ≤ Cαβ⟨w⟩ℓ−|α|+δ|(α,β)|⟨θ⟩m−|β|+δ|(α,β)|.

(Vasy uses two distinct δ, δ′, but this is not needed here.) Then

scΨm,ℓ
δ (RN) = OpL(S

m,ℓ
δ (RN)),

Standard symbolic constructions still work in the variable order setting, but one must work
with equivalence classes of symbols rather than with restrictions. As an example, the prin-
cipal symbol of OpL(a) ∈ scΨm,ℓ(RN) is the equivalence class [a] of a in Sm,ℓδ /Sm−1+2δ,ℓ−1+2δ

δ .
A paradigmatic example of such a variable order symbol is the product

am,ℓ(w, θ) := ⟨w⟩ℓ⟨θ⟩m,(2.14)

with the δ loses incurred by differentiation because the exponent ℓ is a function. Note that
Am,ℓ = OpL(am,ℓ) is not a classical symbol but is still globally scattering elliptic in the sense
that, for some ϵ > 0,

|am,ℓ(t, z, τ, ζ)| ≥ ϵ⟨t, z⟩ℓ⟨τ, ζ⟩m.
We further note that Am,ℓ is invertible as a map on S(X) = S(Rn+1) and hence as a map
on S ′(X) = S ′(Rn+1). We may therefore define the variable order Sobolev space Hm,ℓ

sc by

Hm,ℓ
sc = {u ∈ S ′(X) : Am,ℓu ∈ L2}.

If ℓ = ℓ(w), then OpL(am,ℓ) = ⟨w⟩ℓ OpL(⟨θ⟩m) and Hm,ℓ
sc = ⟨w⟩ℓHm

sc where ⟨w⟩ℓ simply
acts as a spacetime-dependent weight. It follows essentially from Arzela-Ascoli that, for any
m > m′ and ℓ > ℓ′ (the latter interpreted pointwise) then

Hm,ℓ
sc ↪→ Hm′,ℓ′

sc

is a compact inclusion.
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Operators in scΨ0,0(X) are bounded on Hm,ℓ
sc and A ∈ scΨm,ℓ maps Hm,ℓ

sc → H0,0
sc , so the

standard elliptic estimates still apply. In particular, we have the following generalization of
Proposition 2.2 for variable order spaces.

Proposition 2.3. Suppose A ∈ scΨm,r G,B ∈ scΨ0,0 satisfy

WF′(B) ⊂ Ell(G) ⊂ WF′(G) ⊂ Ell(A).

For each s,M,N ∈ R and ℓ ∈ C∞(scT
∗
X), there is a constant C so that

∥Bu∥s,ℓ ≤ C (∥GAu∥s−m,ℓ−r + ∥u∥−N,−M) .

2.5. Hamiltonian flow and radial sets. Having obtained estimates on the elliptic set, we
now analyze the operator P0 near its characteristic set. The estimates obtained by Vasy [40]
include both standard propagation estimates and estimates near the radial points, i.e., the
submanifold of points where the rescaled Hamilton vector field vanishes on ∂scT

∗
X. More

precisely, the global structure of the characteristic set is used in the compilation of the global
estimates we obtain below. In this section, we prove that the characteristic set Char(P0)
is comprised of two connected components, each of which admits a source-sink structure.
The sources/sinks are the radial sets, i.e. vanishing loci of the rescaled Hamilton vector field
Therefore we must analyze the characteristic set and the Hamiltonian flow of P0, which we
proceed to do now.

The full symbol of P0 is

p(t, z, τ, ζ) = τ 2 − (|ζ|2 +m2) .

The standard coordinates on phase space we write as (t, z, τ, ζ), so that the characteristic
set is given by

(2.15) Char(P0) = {(t, z, τ, ζ) : τ 2 − |ζ|2 −m2 = 0}.
In open sets of the form |z|/t < C (including for large C), we may use coordinates

x = 1/t, y = z/t, ξ, η,

on scT
∗
X. We write the canonical one-form on scT ∗X as

(2.16) τdt+ ζ · dz = ξ
dx

x2
+ η · dy

x
, i.e. we write ζ = η, τ = −ξ − η · y.

The Hamilton vector field is defined by

Hp :=
∂p

∂τ
∂t +

∂p

∂ζ
∂z −

∂p

∂t
∂τ −

∂p

∂z
∂ζ .

In the above coordinates we see that the Hamilton vector field is
1

2
Hp = τ∂t − ζ · ∂z

= x (τ(−x∂x − y · ∂y + (η · y)∂ξ)− ζ · (∂y − η∂ξ))

= x ((ξ + η · y)x∂x − (η − (ξ + η · y)y) · ∂y + η · (η − (ξ + η · y)y)∂ξ)
(2.17)

It is a general fact that for a ∈ scSm,r(X) with A = OpL(a), a classical scattering symbol,
one can rescale the Hamilton vector field to obtain a new vector field scHa that is tangent to
the boundary of scT

∗
X. One can take, for example,

(2.18) scHa = ⟨t, z⟩−l+1⟨τ, ζ⟩−m+1Ha ∈ Vb(scT ∗
X),



CAUSAL PROPAGATORS FOR THE KLEIN-GORDON EQUATION 15

where the latter containment means exactly that scHa extends to a smooth vector field on
scT

∗
X and is tangent to the boundary; in particular the flow on scT

∗
X restricts to the

boundary Csc(X) and defines a flow on there. The flow of scHa on Char(A) is what we
refer to as the bicharacteristic or Hamiltonian flow; over the spacetime interior this is the
standard formulation of the bicharacteristic flow as a homogeneous degree zero restriction
to the sphere bundle.

Remark 2.4. This tangency to the boundary in (2.18) is important in that it allows us to

extend the Hamiltonian flow to the whole of scT
∗
X and thus to extend the propagation

of singularities estimates to infinite spacetime and/or large momenta regions. Since this
tangency is unchanged under multiplication by a positive non-vanishing prefactor, there is
some ambiguity in the definition of scHa. Moreover, multiplication by such a prefactor does
not affect the propagation estimates. We use that in regions

(2.19) 0 ≤ x ≤ C, |y| < C,

that x ∼ ⟨t, z⟩−1, meaning

0 < c < x · ⟨t, z⟩ < 1/c,

and in such regions ⟨t, z⟩−1 can be replaced by x in (2.18). A similar remark holds for the
fiber variable (τ, ζ). That is, if we define ρ = 1/τ, µ = ζ/τ , then in regions

(2.20) 0 ≤ ρ ≤ C, |µ| ≤ C,

we have

0 < c < ρ · ⟨τ, ζ⟩ < 1/c,

and in such regions ⟨τ, ζ⟩−1 can be replaced by ρ in (2.18). It will be useful below that
|ρ|, |µ| < C in a neighborhood of the characteristic set of τ 2 − |ζ|2 −m2 = 0.

One can obtain a global definition of scHa which uses xs in place of ⟨t, z⟩−s and ρs in place
of ⟨τ, ζ⟩−s in regions (2.19) and (2.20) by choosing global boundary defining functions which
are equal to x and ρ respectively in those regions, but we do not make this process formal
here; we simply use powers of x and ρ to rescale in regions where to do so is valid.

The relationship between the commutator [A,B] := AB−BA and the Hamiltonian flow un-
derpins the propagation estimates in the next section. Indeed, if A = OpL(a) ∈ scΨm1,r1(X)
and B = OpL(b) ∈ scΨm2,r2(X), then

(2.21)
[A,B] ∈ scΨm1+m2−1,r1+r2−1(X) ,

jsc,m1+m2−1,r1+r2−1 (i[A,B]) = ⟨t, z)⟩−r2⟨τ, ζ⟩−m2 · scHa(b) .

It is of course possible to phrase this relationship in terms of the scattering principal sym-
bols of A and B, our normalization of the principal symbol would then make the symbol’s
dependence on the orders explicit. The same relationship also holds if one of A or B lies
in a variable order space; the only change in this case is that the principal symbol must be
interpreted as an equivalence class of (variable order) symbols.

The radial set of Hp is given by

R := Char(P0) ∩ scH−1
p (0) ⊂ ∂scT

∗
X .(2.22)

The rescaled vector field scHp is non-vanishing on the portion of CscX lying over the interior

of X; to locate the radial set we therefore consider it over ∂X × Rn+1.
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Despite the fact that ξ, η are dual (in the rescaled scattering sense) to x, y, it is sometimes
useful to have different coordinates on the cotangent bundle. For example in the coordinates
(x, y, τ, ζ) we have

Hp = 2τ(−x2∂x − xy · ∂y)− xζ · ∂y
= −2x (τx∂x + (ζ + τy) · ∂y)

(2.23)

Thus, in regions with x ≤ C, |y| ≤ C and 0 ≤ ρ = 1/τ ≤ C, |µ| = |ζ/τ | < C, by Remark 2.4,
we have

(2.24) (1/2)scHp = −x∂x − (µ+ y) · ∂y,
This latter expression indicates how we can realize the zero locus of scHp as a family of radial
sinks and sources; namely, as long as t, τ > 0, we can work in the following coordinates

(2.25) x =
1

t
, w =

ζ

τ
+ y, ρ =

1

τ
, µ =

ζ

τ
,

to obtain

(1/2)Hp = (x/ρ) (−x∂x − w · ∂w) ,(2.26)

This expression indeed shows that, in {t > 0} ∩ {τ > 0}, the radial set is x = 0, w = 0 in
the characteristic set, that is, in these coordinates it is exactly

Rf
+ = {(x,w, ρ, µ) ∈ R+ × Rn × R+ × Rn : x = 0, w = 0, 1− |µ|2 −m2ρ2 = 0}

which is a smooth submanifold of scT
∗
X intersecting the boundary ρ = 0 normally and is a

radial sink of the flow.
However, only the region t > 0, τ > 0 is preserved by the flow, and in that region x =

1/t and ρ = 1/τ are valid boundary defining functions for spacetime and fiber infinity
respectively near the radial set; in the other three regions, i.e. the other combinations of
signs in ±t > 0,±τ > 0, one can use analogous coordinates. For example, in t < 0, τ > 0,
using −1/t and 1/τ as bdf’s, only the overall sign of the expression in (2.26) changes and
in that region the radial set is a radial source. As for the set {t = 0} ∪ {τ = 0} where no
such decomposition holds, the latter set, {τ = 0}, lying in the elliptic set of P0, is irrelevant,
whereas the former lies away from the radial sets but intersects the characteristic set; we
analyze that part only in Proposition 2.5 when we look at the global properties of Char(P0).

First, though, we require some basic definitions. We define future and past causal infinity
as

ι+ := {(t, z) : t ≥ |z|} ∩ ∂X ,

ι− := {(t, z) : − t ≥ |z|} ∩ ∂X ,

where the closure is taken in X. Its boundary is a compressed null infinity,

S+ := ∂ι+ , S− := ∂ι− .

It is “compressed” in the sense that it is lower dimensional than null infinity I ±, which
is typically n−dimensional. Null infinity can be shown to be naturally identified with the
faces introduced by blow up of S±, a formalism not used here but very useful in the study
of radiation fields [2, 3].
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We then define the future and past radial sets as

Rf := R∩ scT
∗
ι+X ,

Rp := R∩ scT
∗
ι−X .

and, moreover, using that τ = 0 does not intersect the characteristic set, we have the further
decomposition

Rf = Rf
+ ⊔Rf

− , Rp = Rp
+ ⊔Rp

− ,

where

R•
+ := R• ∩ {τ ≥ m} ,

R•
− := R• ∩ {τ ≤ −m} .

From (2.26) we can already see that away from fiber infinity, the radial set has the form:

Rf ∩ {|(τ, ζ)| <∞} = {x = 0, ζ = −τy, τ 2 = |ζ|2 +m2} .(2.27)

Proposition 2.5. The characteristic set Char(P0) consists of two connected components,

Char(P0)± = Char(P0) ∩ {±τ > m− ϵ}. On the component Char(P0)+, the radial set Rf
+

is a global sink, and Rp
+ a global source, for the Hamiltonian flow, while on Char(P0)−, Rf

−
is a global source, and Rp

− a global sink. These sinks / sources are radial in the sense that
the Hamilton vector field is of the form (2.26) in neighborhoods of each sink component, and
satisfies the analogue of (2.26) with positive sign near the source components.

The projection of the radial set to the base variables is causal infinity,

π(Rf ) = ι+, π(Rp) = ι− ,

and this projection is a diffeomorphism on each component of R away from fiber infinity.

Proof. We wish to use (2.26), and the three other expressions obtained by using the other
combinations of ρ = ±1/τ, x = ±1/t. First off, defining

(2.28) ϕt = t/⟨t, z⟩, ϕz = z/⟨t, z⟩,
we note that for δ0 > 0, on the region

Char(P0) ∩ {|ϕt| ≥ δ0} we have ⟨τ, ζ⟩ ∼ |τ | and ⟨t, z⟩ ∼ t,

where ⟨τ, ζ⟩ ∼ |τ | means there is a constant c > 0 so that c ≤ |τ |
⟨τ,ζ⟩ ≤ c−1. Thus in this region,

if t, τ > 0: (1) (2.26) holds and (2) scHp = aHp where 0 < c ≤ a ≤ C is a smooth, bounded,
positive function. All this is to say that (2.26) and the analogous expressions for the other
sign choices ρ = ±1/τ, x = ±1/t completely describe the behavior of scHp on Char(P0) in
regions where |ϕt| ≥ δ0. In particular, for example where t > 0, τ > 0, R is a smooth radial
sink given by w = 0 = x and intersects fiber infinity (in this region where ρ = 0) normally.

This region contains only Rf
+, and the expressions in neighborhoods of the other components

are easily derived.
It remains only to show that in the set Char(P0) ∩ {|ϕt| ≤ δ0} all trajectories of the

Hamiltonian flow leave this region. As it is useful below in our definition of spacetime
weights for the causal propagators, we do this by showing that ϕt is a monotone quantity on
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|y| = 1ι+ = π(Rf )

ι− = π(Rp)

Figure 1. The projection of the radial set R ⊂ scT
∗
X to X. The dotted lines

denote the light cone, {|t| = |z|}. The forward weights satisfy ℓ+ < −1/2 in a
neighborhood ι+ and ℓ+ > −1/2 in a neighborhood of ι−.

the flow in regions ϕt ∈ (−(1/
√
2) + δ, (1/

√
2)− δ). (Note that on the spacetime boundary,

|ϕt| = 1/
√
2 is null infinity.) Indeed,

(1/2)Hpϕt =
1

⟨t, z⟩
(
τ(1− ϕ2

t ) + ϕtζ · ϕz
)

Thus on Char(P0), in the τ > 0 region, where τ =
√

|ζ|2 +m2, using

(1/2)Hpϕt ≥
√
|ζ|2 +m2(1− ϕ2

t )− |ϕt||ζ||ϕz|
≥
√
|ζ|2 +m2

√
1− ϕ2

t

(√
1− ϕ2

t − |ϕt|
)
.

Using that
√

1− ϕ2
t − |ϕt| ≥ (1/

√
2)− |ϕt| where |ϕt| ≤ 1/

√
2 we have, for some c > 0, that

cscHpϕt ≥ (1/
√
2)− |ϕt|,

when |ϕt| ≤ 1/
√
2, so ϕt is monotone increasing on the τ > 0 component of Char(P0), and

a similar argument shows it is decreasing on the τ < 0 component.
Thus every trajectory eventually leaves a neighborhood of ϕt = 0, and the global structure

of Char(P0) is as stated. □

2.6. Propagation of singularities in the scattering calculus. We now discuss the prop-
agation estimate away from the radial sets. Specifically, we have the standard real principal
type propagation estimates for P0, following Vasy [40, Theorem 4.4].
To make the statement cleaner, we define the following notion of control. Given sets

U1, U2, U3 ⊂ scT
∗
X open, we say that U1 is controlled along scHp by U2 through U3 if for

every α ∈ U1∩Char(P0), there is a σ < 0 so that the bicharacteristic γ of scHp with γ(0) = α
has γ(σ) ∈ U2 and γ([σ, 0]) ⊂ U3. In other words, each point in U1 lies on a bicharacteristic
segment contained in U3 that originates in U2.

Proposition 2.6. Suppose B,E,G ∈ scΨ0,0 and that WF′(B) is controlled along scHp by

Ell(E) through Ell(G). Assume further that ℓ ∈ C∞(scT
∗
X) is decreasing monotonically

along the Hamiltonian flow.



CAUSAL PROPAGATORS FOR THE KLEIN-GORDON EQUATION 19

For anyM,N there is C > 0 such that if Eu ∈ Hs,ℓ
sc and GP0u ∈ Hs−1,ℓ+1

sc , then Bu ∈ Hs,ℓ
sc

and

∥Bu∥s,ℓ ≤ C (∥Eu∥s,ℓ + ∥GP0u∥s−1,ℓ+1 + ∥u∥−N,−M) .

The same is true if WF′(B) is controlled along scH−p = −scHp by Ell(E) through Ell(G) and
ℓ is monotone increasing along the scHp-flow.

Remark 2.7. The differential order smay also be taken variable in this proposition, monotone
along the flow. This is irrelevant for our purposes and thus omitted. The operator P0 may
also be taken to be an element P ∈ scΨm,r in which case the s − 1 on the RHS is replaced
by s−m+ 1 and the ℓ+ 1 replaced by ℓ− r + 1; again this is irrelevant for our purposes.

As it informs the proof of the estimates in Section 6 below, we provide a sketch of the
proof of Proposition 2.6. The proof proceeds in several steps. We first establish the following
weaker estimate by a positive commutator argument:

Lemma 2.8. Suppose B,E,G ∈ scΨ0,0(X), and that WF′(B) is controlled along scHp by

Ell(E) through Ell(G), and ℓ ∈ C∞(scT
∗
X) is decreasing monotonically along the Hamilton-

ian flow. For any M,N , there is a C > 0 so that for all u ∈ Hs,ℓ
sc with P0u ∈ Hs−1,ℓ+1

sc ,

∥Bu∥s,ℓ ≤ C
(
∥Eu∥s,ℓ + ∥GP0u∥s−1,ℓ+1 + ∥Gu∥s−1/2,ℓ−1/2 + ∥u∥−N,−M

)
.

The same is true if WF′(B) is controlled along −scHp by Ell(E) through Ell(G) and ℓ is
monotone increasing.

Proof of Lemma 2.8. We first prove the lemma for u ∈ S(X); a standard approximation
argument extends the result to u as in the statement of the lemma.

Our aim is to exploit the relationship (2.21) between the commutator and the Hamiltonian
flow. Indeed, given α ∈ WF′(B) ∩ Char(P0), we construct an operator

Q = As− 1
2
,ℓ+ 1

2
Q0 ∈ scΨs− 1

2
,ℓ+ 1

2 (X), Q0 ∈ scΨ0,0(X),

where As,ℓ = OpL(as,ℓ) with as,ℓ the symbol defined in (2.14). We then consider

i

2
⟨[P0, Q

∗Q]u, u⟩ = Im⟨Qu,QP0u⟩.
On the one hand, for each ϵ > 0, this quantity bounds the following from above:

⟨A 1
2
,− 1

2
As− 1

2
,ℓ+ 1

2
Q0u,A− 1

2
,+ 1

2
As− 1

2
,ℓ+ 1

2
Q0P0u⟩ ≥ − 1

4ϵ
∥Q0P0u∥2s−1,ℓ+1 − ϵ∥Q0u∥2s,ℓ.

On the other hand, we know the relationship between the principal symbol of i[P0, Q
∗Q]

and the Hamiltonian flow, which we exploit to construct Q symbolically. In principle, the
construction requires three cases; when α ∈ ∂X × Rn+1, when α ∈ X × ∂Rn+1, and when
α ∈ ∂X × ∂Rn+1. We treat the first two cases simultaneously; the third case is handled by
including an additional boundary defining function in the definition of the symbol of Q.

Following Vasy [40, Section 4.3], we first construct q0 ∈ scS0,0(X) so that q0 is elliptic at
α and there are c > 0 and a compact set K ⊂ Ell(e) and

−
(
a2
s− 1

2
,ℓ+ 1

2
q0Hpq0 + q20as− 1

2
,ℓ+ 1

2
Hpas− 1

2
,ℓ+ 1

2

)
− ca2s,ℓq

2
0 ≥ 0 off of K.

In a small neighborhood of α we employ coordinates q1, . . . , q2(n+1) on an open neighborhood

W of α contained in Ell(G)in scT
∗
X so that scHp = ∂q1 and q2(n+1) is a boundary defining

function. We further assume that α = (0, . . . , 0) in this system. This is possible because
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α is on the boundary and scHp is non-vanishing and tangent to the boundary. We suppose
that γ is the integral curve of scHp passing through α with γ(0) = α and γ(σ) = β, σ < 0.
Given open neighborhoods U1 of γ([σ, 0]) and U2 of β in W we take ϵ > 0 so that the open
rectangles

{q : q1 ∈ (σ − ϵ, ϵ), q2(n+1) < ϵ, |qj| < ϵ, j = 2, . . . , 2n+ 1},
{q : q1 ∈ (σ − ϵ, σ + ϵ), q2(n+1) < ϵ, |qj| < ϵ, j = 2, . . . , 2n+ 1}

around γ([σ, 0]) and β are contained in U1 and U2, respectively. Here q1 acts as the flow
parameter and q2(n+1) acts as the spacetime boundary defining function; powers q2ℓ2(n+1) are
spacetime weights.

We then set

φ(s) =

{
exp(−κs+ (s− ϵ)−1 − (s− σ + ϵ)−1) σ − ϵ < s < ϵ,

0 otherwise
,

and let χ ∈ C∞
c (R) be a smooth function that is identically one in a neighborhood of 0. We

finally set

q0 = φ(q1)χ
2
(q2
δ

)
. . . χ2

(q2n−1

δ

)
:= φχ2.

For δ > 0 sufficiently small, this function q0 is supported in the rectangle above. Moreover,
the explicit definition of φ allows us to bound φ in terms of φ′ = scHp(φ(q1)).

With q = as,ℓq0, the principal symbol of (i/2)[P0, Q
∗Q] is then

qHpq = a2
s− 1

2
,ℓ+ 1

2
φ′φχ2 + φ2χ2as− 1

2
,ℓ+ 1

2
Hpas− 1

2
,ℓ+ 1

2
.

In the region of interest, the weight a is a non-vanishing smooth multiple of q
−ℓ− 1

2

2(n+1), i.e.,

as−1/2,ℓ+1/2 = bq
−ℓ− 1

2

2(n+1), so

as− 1
2
,ℓ+ 1

2
Hpas− 1

2
,ℓ+ 1

2
= q−2ℓ−1

2(n+1)bHpb+ b2q−2ℓ−1
2(n+1)(log q2(n+1)) (−Hpℓ) .

The second term has a favorable sign as ℓ is decreasing along the flow, while the first term
will be controlled by the main term in the commutator.

Taking κ > 0 sufficiently large allows for the main term (arising from φ′) to control the
others.

We now set e ∈ scS0,0(X) so that E = OpL(e); as K ⊂ Ell(E), there is thus some C > 0
so that, with q = as− 1

2
,ℓ+ 1

2
q0,

(2.29) Ca2s,ℓe
2 − qHpq − ca2s,ℓq

2
0 ≥ 0.

The construction of q0 also guarantees that WF′(Q0) ⊂ Ell(G); explicit choice of the com-
mutant Q0 will also guarantee that this nonnegative quantity (2.29) above is a smooth sum
of squares.2 The G̊arding inequality in Lemma 2.9 below then shows that

C⟨E∗Eu, u⟩ − ⟨ i
2
[P0, Q

∗Q]u, u⟩ − c⟨Q∗
0A

∗
s,ℓAs,ℓQ0u, u⟩ ≳ −∥Gu∥2s−1/2,ℓ−1/2 − ∥u∥2−N,−M .

In other words, we have the bound

⟨ i
2
[P0, Q

∗Q]u, u⟩+ c∥Q0u∥2s,ℓ ≲ ∥Eu∥2s,ℓ + ∥Gu∥2s−1/2,ℓ−1/2 + ∥u∥2−N,−M .

2This allows us to avoid the use of the sharp G̊arding inequality here.
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Putting the two bounds together and taking ϵ = c/2 yields the estimate

∥Q0u∥2s,ℓ ≲ ∥Gu∥2s−1/2,ℓ−1/2 + ∥Eu∥2s,ℓ + ∥Q0P0u∥2s−1,ℓ+1 + ∥u∥2−N,−M .
□

For completeness, we include the “easy” version of the G̊arding inequality used in the
proof sketch above:

Lemma 2.9. If A ∈ scΨm,ℓ(X) has a nonnegative principal symbol that is a sum of squares,
i.e., there are B1, . . . , Bk ∈ scΨm/2,ℓ/2(X) with

σsc,m,ℓ(A) =
k∑
j=1

|σsc,m/2,ℓ/2(Bj)|2,

and G ∈ Ψ0,0(X) satisfies WF′(A) ⊂ Ell(G), then for every M,N ∈ R, there is a constant

C so that for all u ∈ H
m/2,ℓ/2
sc ,

⟨Au, u⟩ ≥ −C∥Gu∥2m−1
2
, ℓ−1

2

− C∥u∥2−N,−M .

Proof. This is an easy consequence of elliptic regularity, see [1] for details. □

An inductive application of Lemma 2.8 (combined with repeated adjustments to the sup-
ports of the symbols) then establishes Proposition 2.6 for u ∈ Hs,ℓ

sc with P0u ∈ Hs−1,ℓ+1
sc .

Finally, a regularization argument finishes the proof. The regularization argument is techni-
cal and involves replacing the symbols in the proof of Lemma 2.8 with weaker approximating
symbols. As the relevant symbol classes are not used in the rest of the paper, we refer the
reader to Vasy [40, Section 4.4] and defer our discussion of regularization arguments to
Section 6 below.

2.7. Radial points estimates. We also need estimates that hold near the radial set R.
In addition to illuminating the proof for the model setting, we also must employ estimates
which hold microlocally near open subsets of R located away from C. In Section 7 below,
we establish estimates that hold in a more general setting; these are then combined with
estimates that are local on R. For simplicity, we use the radial points estimates of [40]
directly, and then show that these can easily be localized on R.
We use the radial points estimates from Vasy [40] proven for a real principal type operator

P ∈ scΨm,r near a smooth submanifold of radial points (there denoted L). Specifically,
we use the estimates in Proposition 4.12 of [40], which are the “first pass” estimates in
which the norm ∥Bu∥s,ℓ is controlled by a norm ∥Gu∥s−1/2,ℓ′ with r′ ∈ [ℓ − 1/2, ℓ). An
induction argument then removes this norm on the right hand side. We use these estimates
because they clarify how easily the estimates can be localized along the radial set. The
assumptions in Vasy’s proposition about the Hamiltonian flow of P near the radial set are
given in equation (4.12) there; these assumptions are satisfied for radial vector fields as

in equation (2.26). Vasy’s quantity β̃ is 0 if P − P ∗ ∈ Ψm−2,r−2 (i.e. is lower than the
expected order for real principal type operators). As P0 is self-adjoint, we do not include
that correction here.

As discussed by Vasy [40, Section 4.7], the regularity and decay orders s, ℓ can be exchanged
thanks to the symmetry in scattering analysis realized by the Fourier transform, which in
particular maps Hs,ℓ

sc isometrically to Hℓ,s
sc . In particular, even though the radial set in Vasy’s

notes is at fiber infinity, it is a trivial change to adapt it to our setting. In contrast with the
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propagation estimates, the positivity near radial points is due entirely to the weight (in our
case ℓ + 1

2
). This leads to two cases depending on the sign of the weight; we refer to these

as “above threshold” and “below threshold” estimates. We first state the above threshold
results, which bounds Hs,ℓ

sc norm of u near a component R′ of the radial set of P0.

Proposition 2.10 (Proposition 4.11 of [40], above threshold). Let R′ denote any one of the
four components of the radial set R of P0. Suppose ℓ is constant near R′ and that ℓ > −1/2
there.

Let s, ℓ′ ∈ R, ℓ′ > −1/2, ℓ′ ∈ [ℓ − 1/2, ℓ). Then there are are B,G ∈ scΨ0,0 with

R′ ⊂ Ell(B) and WF′(B) ⊂ Ell(G), such that: if Gu ∈ H
s−1/2,ℓ′
sc and GP0u ∈ Hs−1,ℓ+1

sc , then
Bu ∈ Hs,ℓ

sc , and for all M,N there is C > 0 such that

(2.30) ∥Bu∥s,ℓ ≤ C
(
∥GP0u∥s−1,ℓ+1 + ∥Gu∥s− 1

2
,ℓ′ + ∥u∥−N,−M

)
.

The operators B and G in the proposition are essentially microlocal cutoffs microsupported
near R′, with B microsupported in a compact subset of the elliptic set of G. Such operators
can easily be constructed in the coordinates in (2.25) nearRf

+ (and the analogous coordinates
near the three other components of R.) Indeed, for δ1 > 2δ0 > 0 sufficiently small and c > 0,
we choose smooth bump functions ϕ0, ϕ1, χ>c so that ϕi(s) = 1 for |s| < δi, ϕi(s) = 0 for
|s| > 2δi, i = 1, 2, and χ>c(s) = 1 for s ≥ c and χ>c(s) = 0 for s ≤ c/2. With these choices,
we define:

B = OpL(b), b = χ>m−δ0(1/ρ)ϕ0(x)ϕ0(|w|)ϕ0(1− |µ|2 −m2ρ2),

with a similar construction for G:

G = OpL(g), g = χ>m−δ1(1/ρ)ϕ1(x)ϕ1(|w|)ϕ1(1− |µ|2 −m2ρ2).

Here, ϕi(1− |µ|2−m2ρ2) cuts off to the characteristic set, ϕi(x)ϕi(|w|) to the radial set, and
χ>m−δi(1/ρ) = χ>m−δi(τ) cuts of to the τ > 0 portion of the radial set. It is not hard to
check that, despite the presence of 1/ρ, b and g are smooth scattering symbols microlocalized
near the radial set. Note that

b, g ∈ S0,0(Rn+1),

as they are smooth functions on scT
∗
X. Indeed, they are supported in a set in which all the

coordinates in (x,w, ρ, µ) are bounded, and thus they form smooth coordinates on scT
∗
X in

which x, ρ are boundary defining functions. In particular,

bg = b.

The proof of such an estimate follows from a commutator argument with a commutant Q∗Q
with Q = OpL(q),

q = χ>m−δ1

(
1

ρ

)
ϕ0(x)ϕ0(|w|2)ϕ0(1− |µ|2 −m2ρ2)x−ℓ− 1

2ρ−s+
1
2 .

The commutator i
2
[P0, Q

∗Q] then has principal symbol

(2.31) qHpq =
x

ρ

(
(ℓ+

1

2
)− x

ϕ′
0(x)

ϕ0(x)
− |w|2ϕ

′
0(|w|2)
ϕ0(|w|2)

)
q2.

As ℓ > −1
2
, the first two terms have the same sign, which explains the absence of a term

∥Eu∥ on the right side of the estimate. The other term can be absorbed into the first one if
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δ0 is sufficiently small by observing that δ20|w|2 < 4δ20 on the support of ϕ′
0. The remaining

terms in the estimate arise as before.
We now localize the proposition to neighborhoods of particular closed subsets of R′, al-

lowing us later to combine them with more specialized estimates. In particular, we localize
to Rf

+ ∩ {|y| > 0}. Indeed, as µ = 0 is the only point in Rf
+ lying above y = 0, we use

symbols as in the global radial point estimate together with an additional localizer in µ. In
particular, we replace b with b′ = χ>c0(|µ|)b with a similar definition for g′ = χ>c1(|µ|)g.
Then, provided ci > 2δi, we find that

ess-supp(b) ⊂ {|y| ≥ c′0 − 2δ0}, ess-supp(g) ⊂ {|y| ≥ c′1 − 2δ1}.
We assume moreover that 2c′1 < c′0 so that

b′g′ = b′ and WF′(B′) ⊂ Ell(G′).

We therefore have a family of cutoffs localized near the radial set and away from {y = 0}.
For any c > 0, we can choose these operators so that

Rf
+ ∩ {|y| > c} ⊂ Ell(B′) and {y = 0} ∩WF′(G) = ∅.

From the proposition above and considerations using these microlocalizers on R, we have
the following:

Proposition 2.11 (Localized above threshold estimate). Let R′ denote any one of the four
components of the radial set R of P0. Suppose ℓ is constant near R′ and that ℓ > −1/2
there.

Let s, ℓ′,M,N ∈ R, ℓ′ > −1/2 and B′, G′ ∈ scΨ0,0(X) as above. If G′u ∈ H−N,ℓ′
sc (X)

and G′P0u ∈ Hs−1,ℓ+1
sc , then B′u ∈ Hs,ℓ

sc Moreover, there is a constant C > 0 depending on
M,N, ℓ, ℓ′, s so that

∥B′u∥s,ℓ ≤ C (∥G′P0u∥s−1,ℓ+1 + ∥G′u∥−N,ℓ′ + ∥u∥−N,−M) .

Proof. We first show that the estimates in Proposition 2.10 hold with the B and G replaced
by B′ and G′.
Thus, we assume we are given ℓ, ℓ′, s as Proposition 2.10 and, for G′ as in the current

proposition, that G′u ∈ H
s−1/2,ℓ′
sc and G′P0u ∈ Hs−1,ℓ−1

sc . We wish to deduce that B′u ∈ Hs,ℓ
sc .

Taking G as in Proposition 2.10, note that, if Q̃ a Fourier localizer to |µ > c| e.g.,
Q̃ := OpL(χ>c(|µ|)ϕ(1− |µ|2 −m2ρ2)) ∈ scΨ0,0,

for ϕ a bump function supported near 0 and χ>c a localizer to |µ| ≥ c, then

GQ̃u ∈ Hs−1/2,ℓ′

sc .

Indeed, for c > 0 and δ1 > 0 sufficiently small, WF′(GQ̃) ⊂ EllG′.
As for GP0Q̃u, we have that GP0Q̃u = GQ̃P0u + G[P0, Q̃]u, and G[P0, Q̃]u can be made

lower order than expected because

WF′([P0, Q̃]) ∩WF′(G) = ∅,
which follows directly from the form of the Hamilton vector field (2.26) and the definition
of Q̃.3 Hence,

G[P0, Q̃] ∈ scΨ0,−2.

3In fact, in this case [P0, Q̃] ≡ 0. In the case where P0 is perturbed by a lower order scattering operator
only the wavefront set containment holds.
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Thus we have, again taking c, δ1 sufficiently small,

(2.32) ∥GP0Q̃u∥s−1,ℓ+1 ≤ C (∥G′P0u∥s−1,ℓ+1 + ∥G′u∥s−1,ℓ′ + ∥u∥−N,−M) .

Thus, the hypotheses of Proposition 2.10 apply to Q̃u, and we obtain (2.30) for u = Q̃u
for B as in that estimate. But then there is B′ with

WF′(B′) ⊂ Ell(BQ̃),

obtained simply by taking c > 0 sufficiently large and δ0 sufficiently small. We may thus use

∥B′u∥s,ℓ ≤ C
(
∥BQ̃u∥s,ℓ + ∥u∥−N,−M

)
in combination with (2.30) and (2.32) to give (2.30) for B′ and G′. In other words, if

G′u ∈ H
s−1/2,ℓ′
sc , G′P0u ∈ Hs−1,ℓ+1

sc , then B′u ∈ Hs,ℓ
sc together with the estimate

∥B′u∥s,ℓ ≤ C
(
∥G′P0u∥s−1,ℓ+1 + ∥G′u∥s−1/2ℓ′ + ∥u∥−N,−M

)
.

A standard argument using induction on s in half-integer steps then finishes the proposi-
tion. □

We similarly have the below threshold and localized below threshold estimates. Note the
presence of an additional term on the right side owing to the sign change in equation (2.31).

Proposition 2.12 (Proposition 4.11 of [40]). Let R′ denote any one of the four components
of the radial set R of P0. Suppose ℓ is constant near R′ and that ℓ < −1/2 there.

Let s ∈ R and B,E,G ∈ scΨ0,0(X) be such that WF′(B) \ R′ is controlled along scHp by

Ell(E) through Ell(G). If Eu ∈ Hs,ℓ
sc , GP0u ∈ Hs−,ℓ+1

sc , and Gu ∈ H
s− 1

2
,ℓ− 1

2
sc , then Bu ∈ Hs,ℓ

sc

and, for any M,N ∈ R, there is a constant C so that

∥Bu∥s,ℓ ≤ C
(
∥Eu∥s,ℓ + ∥GP0u∥s−1,ℓ+1 + ∥Gu∥s−1/2,ℓ−1/2 + ∥u∥−N,−M

)
.

For the localized version of the below threshold estimate, we also introduce e′ = χ>c1(|µ|)e
in addition to the definitions of b′ and g′ given for the localized above threshold estimate.
The proof is essentially the same as the proof of Proposition 2.11.

Proposition 2.13 (Localized below threshold estimate). Let R′ be any one of the four
components of the radial set R of P0. Suppose ℓ is constant near R′ and that ℓ < −1/2
there.

Let s,M,N ∈ R and let B′, E ′, G′ ∈ scΨ0,0(X) be as above. If E ′u ∈ Hs,ℓ
sc , G

′P0u ∈
Hs−1,ℓ+1

sc , then B′u ∈ Hs,ℓ
sc , and for any M,N ∈ R, there is a constant C so that

∥B′u∥s,ℓ ≤ C (∥E ′u∥s,ℓ + ∥G′P0u∥s−1,ℓ+1 + ∥u∥−N,−M) .

2.8. Weight functions, Fredholm estimates, and propagators. We now describe in
more detail how to combine the estimates of the previous sections to obtain Fredholm esti-
mates for P0. We pass to a microlocal partition of unity subordinate to a cover of scT

∗
X by

open neighborhoods of the components of the radial set R, the characteristic set CharP0,
and then the elliptic set. On each of these neighborhoods, we appeal to the estimates of
previous sections. Away from the characteristic set, we appeal to elliptic estimates. Near the
characteristic set, the above threshold estimate propagates regularity from a source compo-
nent of the radial set to a small neighborhood of it; we then use the propagation estimates
to conclude regularity in a neighborhood of a sink component, which is then propagated into
the radial set by the below threshold estimate.
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As noted earlier, it is impossible to satisfy simultaneously the conditions for the above
threshold and below threshold estimates with a constant weight, so we appeal to variable
weights. Because the radial estimates have no threshold conditions in the regularity order
s, there is no need to allow variable order regularity. It is only the spacetime weight ℓ that
must vary, and the conditions it must satisfy are summarized in the following definition:

Definition 2.14. Let ℓ ∈ C∞(scT
∗
X;R). We call ℓ admissible if ℓ is monotone along the

Hamiltonian flow within each component of the characteristic set and constant near the
components of R. Moreover, we say ℓ is:

(1) forward if ℓ > −1/2 on Rp
+ ∪Rp

− and ℓ < −1/2 on Rf
+ ∪Rf

−,

(2) backward if ℓ < −1/2 on Rp
+ ∪Rp

− and ℓ > −1/2 on Rf
+ ∪Rf

−,

(3) Feynman if ℓ < −1/2 on Rf
+ ∪Rp

− and ℓ > −1/2 on Rp
+ ∪Rf

−, and

(4) anti-Feynman if ℓ > −1/2 on Rf
+ ∪Rp

− and ℓ < −1/2 on Rp
+ ∪Rf

−.

We write forward weights as ℓ+ and backward weights as ℓ−.

Note that the four types of weight functions described here correspond to the four distin-
guished parametrices of Duistermaat–Hörmander [8]. We encode which propagator we are
considering by selecting an appropriate weight for the function spaces.

In particular, a forward (resp. backward) weight function decreases (resp. increases) as t
increases, while a Feynman (resp. anti-Feynman) weight function decreases (resp. increases)
along the global Hamiltonian flow. Forward and backward weight functions distinguish the
causal (i.e., forward and backward) propagators.

For the causal propagators, the weights can be taken to be functions on spacetime (i.e.,
independent of τ, ζ), while the Feynman and anti-Feynman weights must be genuinely pseu-
dodifferential. We focus now on the causal propagators, but the construction in the Feynman
and anti-Feynman settings follows similar lines (though with a less explicit weight).

To construct the causal weights, we seek a function on spacetime that has the desired
monotonicity and is equal to −1/2± ϵ at Rp/f . We therefore employ the function

ϕt =
t

⟨t, z⟩
from the proof of Proposition 2.5. Indeed, we show there that ϕt is monotone increasing along
the τ > 0 component of the flow and decreasing on the τ < 0 component. For any ϵ, δ > 0,
we then let f : [−1, 1] → R be any smooth, non-increasing function with f(s) = −1/2 + ϵ
for s < −1/

√
2 + δ and f(s) = −1/2− ϵ for s > 1/

√
2− δ and set

ℓ(t, z) = f(ϕt).

With this definition, ℓ is a forward weight function, and −1−ℓ is a backward weight function.
We now introduce some notation for the function spaces on which we expect P0 to be

Fredholm. To simplify matters, we focus on the the construction leading to the forward
propagator, but the same argument shows that the other three choices of weights lead to
Fredholm estimates. We let ℓ+ denote a forward weight function, so that −1 − ℓ+ is a
backward weight function. We recall that

X s,ℓ+ =
{
u ∈ Hs,ℓ+

sc : P0u ∈ Hs−1,ℓ++1
sc

}
, Ys,ℓ+ = Hs,ℓ+

sc

and Ys,ℓ+ is equipped with the norm of Hs,ℓ+
sc , whereas

∥u∥2X s,ℓ+ = ∥u∥2s,ℓ+ + ∥P0∥2s−1,ℓ++1 .
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Although we do not need this fact here, the space X s,ℓ+ depends only on the principal symbol
of P0 and operators with the same principal symbol induce equivalent norms.

As P0 : X s,ℓ+ −→ Ys−1,ℓ++1 is continuous, showing that it is Fredholm therefore reduces
to the following two estimates:

∥u∥s,ℓ+ ≤ C
(
∥P0u∥s−1,ℓ++1 + ∥u∥−N,−M

)
,(2.33)

∥u∥1−s,−1−ℓ+ ≤ C
(
∥P0u∥−s,−ℓ+ + ∥u∥−N ′,−M ′

)
,

for some M,M ′, N,N ′ are such that the inclusions Hs,ℓ+
sc ↪→ H−N,−M

sc and H1−s,−1−ℓ+
sc ↪→

H−N ′,−M ′
sc are compact.

We take now an open cover O1, O2, O3, O4 of scT
∗
X so that:

(1) Rp
± ⊂ O1 ⊂ {ℓ+ = −1/2 + ϵ},

(2) Rf
± ⊂ O2 ⊂ {ℓ+ = −1/2− ϵ},

(3) CharP0 ⊂ O1 ∪O2 ∪O3,
(4) O3 is controlled along scHp by O1,
(5) O2 \ R is controlled along scHp by O3, and
(6) O4 ⊂ Ell(P0).

Now we take a microlocal partition of unity Id = B1 + B2 + B3 + B4, Bi ∈ scΨ0,0(X) with
WF′(Bi) ⊂ Oi.

If u ∈ X s,ℓ+ , then, by assumption, the above threshold estimate applies to u near Rp
± and

so, by Proposition 2.10 (with G = Id),

(2.34) ∥B1u∥s,ℓ+ ≤ C
(
∥P0u∥s−1,ℓ++1 + ∥u∥s−1/2,ℓ′

)
,

where ℓ′ < ℓ+ and −1/2 < ℓ′ < ℓ+ on O1. Now, as O3 is controlled by O1, Proposition 2.6
tells us

(2.35) ∥B3u∥s,ℓ+ ≤ C
(
∥B1u∥s,ℓ+ + ∥P0u∥s−1,ℓ++1 + ∥u∥s−1/2,ℓ′

)
.

The hypotheses for Proposition 2.12 are now fulfilled and so we obtain

(2.36) ∥B2u∥s,ℓ+ ≤ C
(
∥B3u∥s,ℓ+ + ∥P0u∥s−1,ℓ++1 + ∥u∥s−1/2,ℓ′

)
.

Because WF′(B4) ⊂ Ell(P0), the elliptic estimates of Proposition 2.2 tell us

(2.37) ∥B4u∥s,ℓ+ ≤ C
(
∥P0u∥s−2,ℓ+ + ∥u∥s−1/2ℓ′

)
≤ C

(
∥P0u∥s−1,ℓ++1 + ∥u∥s−1/2,ℓ′

)
.

Because Id = B1 +B2 +B3 +B4, we then have the estimate

∥u∥s,ℓ+ ≤ C
(
∥P0u∥s−1,ℓ++1 + ∥u∥s−1/2,ℓ′

)
,

and the inclusion X s,ℓ+ ↪→ H
s−1/2,ℓ′

sc is compact.
To obtain the estimate

∥u∥1−s,−1−ℓ+ ≤ C
(
∥P ∗

0 ∥−s,−ℓ+ + ∥u∥−s−1/2,ℓ′
)
,

we use the same chain of estimates, but with the roles of Rp and Rf exchanged. In other
words, we propagate regularity from Rf to Rp along the Hamiltonian flow in Char(P0). Here
ℓ′ must be chosen analogously, i.e., ℓ′ < −1 − ℓ+ must also be greater than the threshold
−1/2 near Rf . By the standard argument of iterating by 1/2 differential orders we replace
the −1/2 on the right by an arbitrary differential order −N and deduce (2.33). Note that the
formulation of the estimate in (2.33) with the lower order error term on the right hand side
follows from bounding the ℓ′ term by a small factor times that ℓ term on the left; specifically,
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using that for any M > 0 and ϵ > 0 there is C(ϵ) > 0 such that x−ℓ′ ≤ C(ϵ)xM + ϵxℓ, based
off which we have, for any N ∈ R, a C > 0 such that

(2.38) ∥u∥
H−N,ℓ′

sc
≤ C∥u∥H−N,−M

sc
+ ϵ∥u∥H−N,−ℓ

sc
,

so for ϵ sufficiently small the last term can be absorbed onto the left hand side.
With these estimates, we have nearly proved Theorem 2.1:.

Proof of Theorem 2.1. The estimates above in equation (2.33) show that P0 is Fredholm
between the stated spaces. Indeed, the estimates directly imply that the operators have
closed range and finite dimensional kernel. That they have finite dimensional cokernel follows
from the identification of the cokernel with the kernel of the operator on the adjoint space,
which for the forward weight ℓ+ is the backward weight −1− ℓ+.
The fact that P0 is invertible on the stated space then follows if its kernel and cokernel

are zero. This claim follows from the energy/Grönwall argument given below in the proof of
Theorem 8.2. The cokernel of the forward problem is the kernel of a corresponding backward
problem, and vice versa, so this completes the proof.

For the statement that the inverse is the forward propagator, let f ∈ Hs−1,ℓ++1
sc for any

forward weight ℓ+, and assume that for some T ∈ R,

supp f ⊂ {t ≥ T}.
Then the inverse mapping of (2.3) applied to f gives a solution u+ to P0u+ = f with
u+ ∈ Hs,ℓ+

sc . Then u+ satisfies the above threshold condition near the past radial sets, and
just as with elements in the kernel, u+ is Schwartz near past causal infinity. The same
energy/Grönwall argument then shows that u+ is identically zero in t ≤ T , i.e. u+ is the
forward solution. □

2.9. Scattering perturbations. We finally observe that the estimates above are all sym-
bolic in nature, so the same estimates hold for any operator with the same principal symbol
and sub-principal symbol as P0. In fact, we require only that these agree at ∂X×Rn as long
as the underlying Lorentzian metric is non-trapping.

We therefore consider a “potential”

V ∈ ⟨t, z⟩−1Diff1
sc(X)

with V − V ∗ ∈ ⟨t, z⟩−2Diff0
sc(X). We also allow the differential part

D2
t −Dz ·Dz =: □g0

of P0 to be replaced by the wave operator for an asymptotically Minkowski metric g satisfying

g − g0 ∈ S−2
(
Rn+1; Sym0,2

)
,

where

g0 = dt2 −
n∑
j=1

dz2j .

We further demand that g be non-trapping, i.e., that all null geodesics of g approach I ±

(or equivalently compressed null infinity S±) in both directions along the flow. Then, with

□g = −
√

|g|−1
∂i
√

|g|gij∂j, we treat the operator

Pg,V := □g −m2 − V.
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We observe that P0 and Pg,V have the same principal symbol at spatial infinity ∂X × Rn

and the structure of the Hamiltonian flow is the same as that given in Proposition 2.5.
Additionally, we note that Pg,V −P ∗

g,V ∈ ⟨t, z⟩−2Diff0
sc(X), so that the same propagation and

radial point estimates over the boundary hold. The propagation estimates at fiber infinity
hold with the same proof, and so we in fact have the following theorem:

Theorem 2.15. If g is a non-trapping asymptotically Minkowski metric in the sense that

g − g0 ∈ S−2
(
Rn+1; Sym0,2

)
,

and V ∈ ⟨t, z⟩−1Diff1
sc(X) satisfies V − V ∗ ∈ ⟨t, z⟩−2Diff0(X), then Theorem 2.1 holds for

the operator Pg,V . In other words, if s ∈ R and ℓ+ is a forward weight, then

Pg,V : X s,ℓ+ −→ Ys−1,ℓ++1

is an isomorphism and its inverse is the forward propagator. The same is true when ℓ+ is
replaced by a backward weight ℓ−, in which case the inverse is the backward propagator.

3. Asymptotically static potentials

In this section we describe the spacetime geometry adaptations for the operator PV . For
static potentials V = V (z), the operator PV is not a scattering operator in the sense of
Section 2; V fails to be smooth on the north pole and south pole of X as described below. We
therefore pass to the minimal resolution of X on which V is smooth and thereby recognize
our operator as an element of Vasy’s many-body scattering calculus.

3.1. The resolution of X. Recall that, for the spacetime compactification X = Rn+1
t,z , the

coordinates x = 1/t, y = z/t are valid up to the boundary ∂X in any region in which (x, y)
are bounded. This clarifies the failure of smoothness of V at the point which x = 0, y = 0,
which we refer to as the “north pole” and denote NP. Indeed, there, even for Schwartz
potentials V ∈ S(Rn), we see that V (z) = V (y/x) fails even to be continuous at NP. The
same goes for the “south pole”, SP, where the coordinates x = −1/t, y = z/t vanish. (We
only write x = −1/t when working near SP.) We set C = {NP, SP} ⊂ ∂X. Thus

(3.1) C = ∂X ∩ {z = 0}.
and

NP = ∂X ∩ {z = 0} ∩ {t > 0}, SP = ∂X ∩ {z = 0} ∩ {t > 0}.
On the other hand, V ∈ S(Rn) is smooth on X \ C.

We are therefore led to consider the blow-up of C in X equipped with the blow-down map

βC : [X;C] −→ X .(3.2)

Static potentials that are Schwartz functions V = V (z) ∈ S(Rn) are smooth on [X;C].4

The space [X;C] is the 3sc-single space and is a manifold with corners possessing three
boundary hypersurfaces,

ff+ := β∗
C(NP) ,

ff− := β∗
C(SP) ,

mf := β∗
C(∂X) .

4More general V must have a classical symbol expansion at infinity to be smooth on [X;C].
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ff+

ff−

βC−→

NP

SP

Figure 2. The blow-down map βC : [X;C] → X of the 3sc-single space.

Note that ff± has interior which is isomorphic to Rn
z . In what follows, we typically restrict

our attention to ff+ and write ff = ff+.
Coordinates on [X;C] can be understood in terms of those on X as follows. First off,

coordinates near the boundary of X can be taken near any point p ∈ ∂X near which t→ ∞,
to be

x = 1/t, y = z/t

where here x is a boundary defining function (bdf) of ∂X. Then in the region |z| < C, t > 0,
we have the simple coordinates

x = 1/t, z

with x being a bdf of ff in this region, while near the intersection of ff ∩mf, near any point
there is at least one zk for which x̂ = 1/zk is a bdf for ff and there one can use

(3.3) x̂ = 1/zk, Ŷj = zj/zk(j ̸= k), yk = zk/t,

and here yk is a bdf of mf.

3.2. 3sc-differential operators. Differential operators in the 3sc-calculus are given by

(3.4) Diffm3sc(X) := Diffmsc(X)⊗C∞(X) C
∞([X;C]) .

More concretely, L ∈ Diffm3sc, if

L =
∑

|α|+k≤m

ak,αD
k
tD

α
z ,(3.5)

where the coefficients ak,α are smooth on the blown up space [X;C].
Using the x, z coordinates, it is easy to see that

(3.6) PV = D2
t − (∆ +m2 + V (z)) ∈ Diff2

3sc(X).

On [X;C], general differential operators in the 3sc-calculus are simply

Diffm,l3sc = ⟨t, z⟩lDiffm3sc,
which is to say we do not distinguish, in the notation, the rates of spatial decay or blow up
of coefficients at the faces ff and mf. Thus, in particular

Diffm3sc = Diffm,03sc .

The principal symbol of the operator PV will have three components. Two of them are
inherited directly from the scattering calculus; they are localized away from C, i.e. to the
region of X where V is smooth, and are essentially the same as the scattering principal
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symbol. The other component of the principal symbol, defined only above C, is the “indicial
operator”, and is essentially the time Fourier transform of PV restricted to C.

3.3. 3sc-geometry. We now aim to describe the domain of the principal symbol of a 3sc-
differential operator.

The (radial compactification) of the three-body scattering cotangent bundle is, by defini-
tion, the pullback bundle

(3.7) 3scT
∗
[X;C] := β∗

C
scT

∗
X.

Since we are working over Rn+1, these bundles are trivial and thus there is a natural decom-
position

3scT
∗
[X;C] = [Rn+1;C]× Rn+1.

The manifold with corners 3scT
∗
[X;C] has three boundary hypersurfaces, namely

(3.8) 3scT
∗
ff [X;C], 3scT

∗
mf [X;C], and 3scS∗[X;C] ,

where the latter is the “fiber” boundary of 3scT
∗
X, i.e. the 3scS∗[X;C] = [Rn+1;C]× ∂Rn+1.

We denote the corresponding boundary defining functions as

ρff , ρmf , ρfib .(3.9)

Moreover, we also define the total boundary defining function for the spacetime boundary
ρ∞ := ρffρmf . As discussed in Remark 2.4, such boundary defining functions, which are
used in particular in re-weighting of symbols and distributions below, can be multiplied by
positive function without effecting the estimates in which they are used. One global choice
of ρff would be ⟨t, z⟩−1, but (again see Remark 2.4), it is more convenient to assume that

ρ∞ = x = 1/t

in regions 0 ≤ x ≤ C, |y| ≤ C. Similarly, a global choice of ρfib would be ⟨τ, ζ⟩−1, but it is
more convenient for us to choose ρfib so that

ρfib = ρ = 1/τ

in regions 0 ≤ ρ ≤ C, |µ| ≤ C. We can take ρmf globally as

ρmf = ⟨z⟩−1.

In our analysis using the three-body calculus, near ff we will prove estimates which are
global on the {τ = const.} subsets of phase space. Thus, following the notation of [36], we
define the vector bundle

(3.10) W⊥ := spanR

(
dx

x2

)
⊂ scT ∗

CX.

Thus W⊥ is parametrized by τ ∈ R corresponding to the form −τ(dx/x2), both at NP and
SP, recalling that near SP we write x = −1/t. Formally, W⊥ ⊂ scT ∗

CX is defined as the
annihilator of the subsetW ⊂ scTCX consisting of vectors arising from vector fields U = xU ′

with U ′ ∈ Vb(X) with U ′ tangent to C, where Vb(X) are the vector fields tangent to the
boundary. But the simple definition above suffices. In particular,

(3.11) W⊥ = R ⊔ R,
where both copies of R are parametrized by τ , one over NP and the other over SP.
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τ1

τ0

W⊥

Figure 3. The dashed lines are the sets β−1
C cl(π−1(τ)) for τ = τ0, τ1. The

common boundary of these sets is the fiber equator, fibeq.

The orthogonal projection

π : 3scT ∗
CX −→ W⊥ ,(3.12)

with action (τ, ζ) 7→ τ , does not extend smoothly to scT
∗
CX, but the closures of the fibers

π−1(τ) are smooth submanifolds with common boundary, as depicted in Figure 3. Pulling
back to the three-body space, we have

β−1
C cl(π−1(τ)) = ff ×cl{(τ, ζ)} ⊂ ff ×Rn+1 ⊂ 3scT ∗X,

and thus

(3.13) β−1
C cl(π−1(τ)) ≃ ff ×Rn ≃ scT

∗Rn,

where the equivalence is induced simply by dropping the τ . This will arise below in the
analysis of indicial operators of three-body operators, which will be τ -dependent families of
scattering operators on Rn for which ±1/τ acts as semiclassical parameter.

The coincidence of the boundaries of the {τ = const.} sets in scT
∗
CX will be significant,

below, as it will force the scattering symbols of indicial operators to be constant in τ . We
will denote this common boundary, the fiber equator, by fibeq, so, for fixed τ0 ∈ R,

(3.14) fibeq = ∂Rn+1
τ,ζ ∩ {τ = τ0} ⊂ ∂Rn+1

τ,ζ .

This set is independent of τ0 and depicted in Figure 3. See Section 4.2 for further discussion
of the role played by fibeq in quantization and as the locus of definition of the fiber symbol
of the indicial operator.

The principal symbol of an element of Diffm3sc(X) therefore has three pieces corresponding
to the three boundary components of 3scT [X;C]. The first two pieces are the two components
of scattering principal symbol, (2.12) and (2.13), while the new piece is called the indicial
operator. For differential operators in our context, it is the Fourier transform in time with
the dual variable τ (dual to t) entering as a parameter. This piece of the principal symbol
then yields a parametrized family of scattering differential operators on ff ≃ Rn.
Indeed, the components ak,α of a differential operator restrict to ff to smooth functions,

and the indicial operator for L as in equation (3.5) is given by

N̂ff(L)(τ) = L̂ff(τ) :=
∑

|α|+k≤m

(ak,α|ff)τ kDα
z .(3.15)
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Note that if L were a scattering operator, then the coefficients ak,α|ff would be constant at

ff. Thus, when L ∈ Diffsc, N̂ff(L)(τ) is translation invariant in z, and can be identified via
the Fourier tranform with its total symbol.

More generally, N̂ff(L)(τ) must be regarded as operator-valued function of τ . In particular,
as we will see in our discussion of ellipticity below, global ellipticity of a 3sc-operator is
equivalent to invertibility of all three components of the principal symbol, in particular it
requires invertibility of the indicial operator for each τ .
The 3sc-principal symbol of PV is

j3sc(PV ) =
(
σ3sc(PV ), N̂mf(PV ), N̂ff(PV )(τ)

)
.

Here, σ3sc(PV ) is the “standard” interior principal symbol, i.e. the scattering fiber principal

symbol, N̂mf(PV ) is the spacetime boundary symbol, and N̂ff(PV )(τ) is the indicial operator.

Concretely, σ3sc(PV ) and N̂mf(PV ) are given by (τ 2 − |ζ|2 −m2)ρ2fib restricted to momentum
infinity and mf, respectively. Convenient expressions for these are

σ3sc(PV )(t, z, τ, ζ) = τ 2 − |ζ|2,

while for N̂mf(PV ), a function defined at the spacetime boundary away from C,

N̂mf(PV )(y, τ, ζ) = τ 2 − |ζ|2 −m2.

These functions “match” in the sense that if you multiply by ρ2fib they are equal as ⟨t, z⟩ →
∞, ⟨τ, ζ⟩ → ∞. For our static potential V = V (z), the indicial operator is simply

N̂ff(PV )(τ) = τ 2 − (∆z +m2 + V (z)).(3.16)

The absence of V in the second component of the symbol is a consequence of the assumption
that V decays in z.
In fact, as described below in Section 4.2, the components of this principal symbol must

satisfy matching conditions on the intersection of their domains. This is straightforward
for the components σ3sc(PV ) and N̂mf(PV ), which are restriction of functions, so matching

simply means the values of their restrictions are equal. The component N̂ff(PV ), however,
is a family of scattering operators, and the matching condition for PV is that its scattering
symbols are exactly the restrictions of σ3sc(PV ) and N̂mf(PV ) to the boundary components
of phase space over the front face. This is clarified for a general 3sc-operator below. This a
generalization of the matching condition that holds for scattering symbols (2.12)-(2.13).

3.4. Asymptotically static potentials V and generalizations. Our results apply both
to potential functions and to more general perturbations V . For potential functions, we treat
smooth functions V which approach fixed spatial functions as t→ ±∞.
We assume in general that

(3.17) V = V (t, z) ∈ ρmfC
∞([X;C];R).

Thus (recalling ρmf = ⟨z⟩−1) these are potential functions which are smooth on the whole of
[X;C], vanish at least to order one as z → ∞ (i.e. at mf) and have, in general, non-vanishing
limits at ff.

In particular, we have, in regions with |z/t| < C,

V = V+(z) + V ′(t, z), V ′ = O(1/t) as t→ +∞



CAUSAL PROPAGATORS FOR THE KLEIN-GORDON EQUATION 33

where V+ is a symbol of order −1, meaning

|∂αz V+(z)| ≲α ⟨z⟩−|α|

and V ′ satisfies the following estimates

|∂kt ∂αz V ′(t, z)| ≲k,α ⟨t, z⟩−1−k⟨z⟩−|α| ,

The estimates here are equivalent to the containment (3.17) if you assume in addition that
the V+ and V ′ has asymptotic expansions in 1/t and ⟨z⟩−1. A simple example of such a
potential is a V = V (t, z) ∈ C∞(Rt;S(Rn)), with V (t, z) ≡ V±(z) ∈ S(Rn) for ±t≫ 0.
More generally, for complex-valued V , we assume assume that V ∈ ρmfC

∞([X;C];C) with

2 ImV = V − V ∈ ⟨t, z⟩−2C∞([X;C];C).
This ensures in particular that the “subprincipal symbol” does not influence the threshold
weight of −1/2 that appears in Theorem 1.1. In terms of the asymptotic decomposition
above, this means that

V = V+(z) + V ′(t, z) + i ImV,

where V+ and V ′ are as above and

|∂kt ∂αz ImV (t, z)| ≲k,α ⟨t, z⟩−2−k⟨z⟩−|α| .

In fact, our results more generally, including to differential and pseudodifferential V with
suitable regularity and decay hypotheses, and with an assumption on the subprincipal symbol
V − V ∗ which generalizes the assumption on ImV above.

4. The three-body scattering calculus for Klein-Gordon

In this section we will recall the key features of the 3sc-calculus adapted to our setting.
As noted above, our PV is not a scattering operator on the whole of Rn+1

t,z in the sense of
Melrose, but it is a 3sc-operator in the sense of Vasy. We will now describe what that means
in detail, what the 3sc-operators and their features look like in our setting, and the basic
properties that inform our analysis.

Generally, the 3sc-calculus introduced by Vasy [36], is defined with respect to data which
includes both the total space and collision planes. In contrast with the general case, in
our setting, we have only the {z = z0} collision planes (really lines) for z0 ∈ Rn fixed,
corresponding to the points C on the boundary at infinity.

We can summarize the main features of this introductory section to the 3sc-calculus as
follows.

• The 3sc-operators in our setting are the natural pseudodifferential generalization of
the 3sc-differential operators defined above, exactly in the standard sense that they
are quantizations of symbols whose behaviour is analogous to the behavior of the
total symbols of elements of Diffm,r3sc . These pseudodifferential operators are denotes
3scΨm,r when they have differential order m and spacetime weight order r.

• As with PV (3.16), the principal symbols of these operators have three components.
The first two, like the scattering symbols, are local, i.e. they are functions. The third
is the indicial operator, which has both a t = +∞ and a t = −∞ component itself,
is defined only from data that lives over C, and like the symbol of PV for static V
in (3.16), is a family of operators parametrized by τ , the dual variable to t. Given
A ∈ 3scΨm,r and focusing, as we do below, on NP, the indicial operator is denoted
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N̂ff,r(A) = N̂ff,r(A)(τ). The principal symbol is multiplicative, in the sense that the
indicial operator of the composition of two 3sc-operator is the composition of the
indicial operators. The behavior of N̂ff,r(A)(τ) in τ is semiclassical as τ → ±∞.

• Ellipticity is still appropriately construed as invertibility of the principal symbol.
Namely, global ellipticity is exactly the assumption that the first two components
of the principal symbol (which are functions) are non-zero, and that the indicial
operator is semiclassically elliptic and invertible for all τ .

• There is also an appropriate notion of microlocal 3sc-ellipticity, and corresponding
3sc-microlocal elliptic estimates.

• As in Vasy’s treatment, we use the standard L2-based Sobolev spaces on Rn+1. (In
particular, we do not introduce spaces specifically adapted to the 3sc setting.) Thus,
our Sobolev spaces are exactly those used in Section 2 above. All the estimates
we state and prove are for distributions in the scattering (i.e. standard!) weighted
Sobolev spaces Hs,ℓ

sc (Rn+1
t,z ).

Moreover, in this section we confront perhaps this most striking difference between 3sc and
sc operators, namely that general commutators of 3sc operators do not have the standard
loss of one order in comparison to composition. Namely, the analogue of (2.21) for 3sc-
operators fails. Indeed, a static, potential function V (z) ∈ S(Rn) lies in 3scΨ0,0(X) (because
it does not decay in time) and the partial derivative in a spatial coordinate ∂zj ∈ Diff1

sc(X) ⊂
3scΨ1,0(X) while the commutator [∂zj , V ] = ∂zjV has no additional time decay, and thus one

concludes only that [∂zj , V ] ∈ Diff0,0
3sc(X) ⊂ 3scΨ0,0(X). Regarding commutators, we make

the additional point.

• As in the examples just discussed, if A ∈ 3scΨm1,r1 and B ∈ 3scΨm2,r2 , then in general
[A,B] ∈ 3scΨm1+m2−1,r1+r2 . If either one of A or B satisfies a “centrality condition”,

which is essentially that N̂ff,r(A)(τ) is a function (as opposed to an operator) then
in fact [A,B] ∈ 3scΨm1+m2−1,r1+r2−1. In case this centrality condition is satisfied, a
formula for the principal symbol of [A,B] is given. See Section 4.3.

Our treatment is simplified in comparison to the general case of the 3sc-calculus, in which
more complex arrangements of collision planes are treated. In particular, we present a
simplified commutator formula for the indicial operator below. More important is the fact
that in our setting, as we treat a hyperbolic operator, the characteristic set extends to fiber
infinity; we must therefore discuss the behavior of the indicial operator for large ±τ , and we
do so below in our treatment of the indicial operator as a semiclassical scattering operator.

4.1. 3sc-pseudodifferential operators. The space of (classical) three body scattering sym-
bols is

(4.1) 3scSm,r(X;C) = ρ−rfibρ
−m
∞ C∞(scT

∗
[X;C])

and the space of (classical) 3sc-pseudodifferential operators of order m, r is

(4.2) 3scΨm,r = OpL(
3scSm,r)

by [36, Lemma 3.5], where, concretely, for a ∈ 3scSm,r,

A = OpL(a) =

∫
ei(t−t

′)τ+i(z−z′)·ζa(x, z, τ, ζ)dτdζ
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(This is taken as the definition of 3scΨm,r, whereas in the cited paper the space of PsiDO’s is
defined as an appropriate set of integral on the three-scattering double space; we do not use
this latter definition directly in our work.) In the original (t, z) coordinates, a 3sc-symbol is
a smooth function on Rn+1

t,z × Rn+1
ϑ such that each seminorm

∥a∥3sc,M =
∑

k+|α|+|β|≤M

sup
t,z,ϑ

⟨t, z⟩k⟨z⟩−r+|α|⟨ϑ⟩−m+|β| |∂kt ∂αz ∂βϑa(t, z, ϑ)|

is finite.

Remark 4.1. The spaces of classical scattering and 3sc-symbols can also be defined by refer-
ence to the compactified spaces. Namely, scS0,0(Rn+1) are exactly the smooth functions on

the compactified scattering cotangent bundle scT
∗
X while 3scS0,0(Rn+1) is exactly the smooth

functions on the compactified 3sc-cotangent bundle 3scT
∗
X.

To define the indicial operator, we need a lemma to the effect that a 3sc-operator defines
an operator on ff via extension and restriction to the boundary. From [36, Corollary 3.4] we
have the mapping properties for smooth functions (the differential order plays no significant
role here):

Lemma 4.2. If A ∈ 3scΨm,r(X), then

A : Ċ∞(X) −→ Ċ∞(X)

and

A : ρkmfρ
k′

ff C
∞([X;C]) −→ ρk+rmf ρ

k′+r
ff C∞([X;C]) .

We also note that sc-operators are 3sc-operators

scΨm,r(X) ⊂ 3scΨm,r(X) ,

since the scattering symbol estimates imply in particular the ∥•∥3sc,M estimates above. (All
our operators are assumed classical throughout.)

We recall the main boundedness property for 3sc-operations, which is proven using the
standard square-root trick.

Proposition 4.3 ([36], Cor. 8.2). For A = OpL(a) ∈ 3scΨm,r and s, ℓ ∈ R,

(4.3) A : Hm+s,r+ℓ
sc (Rn+1) −→ Hs,ℓ

sc (Rn+1).

is bounded, with operator norm bounded by a seminorm ∥a∥M .

Having introduced the total symbols of 3sc-operators, we now consider the appropri-
ate definition of their principal symbols. Indeed, recall from Section 2.2 that for a scat-
tering operator, OpL(a) = A ∈ scΨm,l(X), the two components of the principal symbol

jsc,m,r(A) = (σsc,m,r(A), N̂sc,m,r(A)) are the restriction sof the function ⟨τ, ζ⟩−m⟨t, z⟩−ra to

the two components of ∂3scT
∗
X.

In principal, one could define the 3sc-principal symbol of OpL(a) = A ∈ 3scΨm,r to be the

restriction of a to the four components of the boundary of 3scT
∗
X. However, such a definition

would have the limitation that it would not be multiplicative over ff, a limitation which is
addressed by using, instead of the front face restriction, the family of indicial operators
mentioned above and described in Section 4.2 and Section 4.4 below.
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When A = OpL(a) ∈ 3scΨ0,0, the symbols over mf and at fiber infinity are simply the
boundary component restrictions

N̂mf(A) = a|3scT ∗
mf [X;C] ∈ C∞(3scT

∗
mf [X;C])

and

σ3sc(A) = a|3scS∗[X;C] ∈ C∞(3scS∗[X;C]),

on in terms of the boundary defining functions in (3.9), they are the restrictions on ρmf = 0
and ρfib = 0, respectively. This is the 3sc generalization of the two scattering principal symbol
components (2.12)-(2.13). When A = OpL(a) ∈ 3scΨm,r and a needs to be re-weighted to
have boundary restrictions, then we use the boundary defining functions most suitable to
our analysis. We proceed to formalize this now.

4.2. The principal symbol and the indicial operator. Generalizing the indicial oper-
ator N̂ff(PV ) (3.16), we describe now how A ∈ 3scΨm,r has an indicial operator N̂ff,r(A) =

N̂ff,r(A)(τ), a smoothly-parametrized family of scattering operators on ff. The indicial fam-
ily is one of the three components of the total 3sc-principal symbol of A, together with the
(rescaled) restrictions of the symbol of A to mf and fiber infinity [36, Chap. 6]. The main
goals of this subsection are three-fold:

• to define the indicial family N̂ff,r(A) and show that it is the quantization of a boundary
restriction of the symbol of A,

• to prove that N̂ff,r(A) is in fact a semiclassical scattering operator, and to character-
ize those semiclassical scattering operators which arise as indicial operators of 3scΨ
operators,

• to recall the 3sc-principal symbol j3sc, show that it is multiplicative, and define left-
quantization on appropriate principal symbols. This is Proposition 4.8 below.

The properties of the indicial operator are simplified in our case, in comparison with the
general 3sc-calculus, due C being zero-dimensional, and correspondingly W⊥ being one-
dimensional. Thus, in particular N̂ff,r(A) depends on a single parameter. What we develop
here is the precise sense in the operator is semiclassical, and the precise sense in which a
special class of semiclassical scattering operators over ff can be quantized into 3sc-operators.

Also note that, while we typically work near NP for brevity, there are in fact two compo-
nents of the indicial operator corresponding to the two boundary hypersurfaces ff = ff+,ff−,
and the indicial operator in fact is two separate families, one over NP and one over SP. We
often elide separate discussion of the SP component since the details are nearly identical to
that of the NP component.

Beginning with A ∈ 3scΨm,0, we assume here and throughout that A = OpL(a) for a
classical symbol a. By [36, Cor. 3.4], if u ∈ C∞([X;C]) then Au ∈ C∞([X;C]). If f ∈
C∞([X;C]) and u|ff = f , we define

A∂f := (Au) |∂[X;C],

which, by Lemma 4.2, is independent of the extension u of f . In particular, identifying ff
with Rn, if f ∈ S(Rn), then the operator

Afff := A∂(f)|ff
is well defined.
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Choosing τ0 ∈ R, by Vasy’s work [36, Lemma 6.1],

eiτ0/xAe−iτ0/x ∈ 3scΨ0,0

which gives the definition of the indicial operator at τ0, namely:

(4.4) N̂ff(A)(τ0) :=
(
eiτ0/xAe−iτ0/x

)
ff
.

(In particular, Aff = Âff(0).) We write

(4.5) Âff(τ0) = N̂ff(A)(τ0)

Given A ∈ 3scΨm,r we have xrA ∈ 3scΨm,0 and define

(4.6) N̂ff,r(A)(τ0) = x̂rAff(τ0),

so in particular for A ∈ 3scΨ0,0, Âff,0 = Âff . We also write for short

Âff,ℓ := N̂ff,ℓ(A) .

Given A = OpL(a), we now derive a simple formula for Âff,r in terms of a. Indeed in

Lemma 4.4 below we see that Âff,ℓ is the left quantization in z of an appropriate boundary
restriction of a to ff.
Vasy [36, p. 23] shows that Aff can be obtained by restriction of the integral kernel of

A ∈ 3scΨm,0 to a boundary hypersurface sfC of the scattering triple space X2
3sc; although we

do not discuss this space in detail here, we provide an illustrative formal computation. In
particular, in the coordinates,

x = 1/t, S = (x− x′)/x2, z, Y = (y − y′)/x,

the kernel of A is conormal to the diagonal S = 0, Y = 0 smoothly down to x = 0.

Au =

∫
KA(t, z, t

′, z′)u(t′, z′)dt′dz′

=

∫
KA(t, z, S/(1− xS),

z − Y

1− xS
)u

(
S

1− xS
,
z − Y

1− xS

)
1

(1− xS)n+2
dSdY

(4.7)

Then defining

A(x, S, z, Y ) = (1− xS)−(n+2)KA(t, z,
S

1− xS
,
z − Y

1− xS
)

on x = 0, we obtain, as in [36, Eq. 4.15]

Au|x=0 = Affu|x=0 =

∫
A(0, S, z, Y )u(0, z − Y )dSdY,

which is to say that, as a Schwartz kernel,

Aff =

∫
A(0, S, z, Y )dS

The functions

x, t̃ = t− t′, z, z̃ = z − z′
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are also coordinates near sfC . (These are the Wa,W
a functions from [37].) At x = 0 we

have S = t̃ and z̃ = Y . If OpL(a) = A, then, with aff(z, τ, ζ) = a|3scTffX
and a0(x, z, τ, ζ) =

a(1/x, z, τ, ζ)

KA =

∫
eit̃τ+iz̃·ζa(t, z, τ, ζ)dτdζ

=

∫
eit̃τ+iz̃·ζa0(x, z, τ, ζ)dτdζ

=⇒ Aff =

∫
eit̃τ+iz̃·ζaff(z, τ, ζ)dτdζdt =

∫
eiz̃·ζaff(z, 0, ζ)dζ.

(4.8)

Conjugating by eiτ/x we then obtain:

Lemma 4.4. Let A = OpL(a) for a ∈ 3scSm,r, and denote the (rescaled) restriction of a to
ff by

(4.9) aff := (xra)|3scTffX
,

Then Âff(τ0) ∈ scΨm,0(Rn
z ) and has kernel

(4.10) Âff(τ0) =

∫
ei(z−z

′)·ζaff(z, τ0, ζ)dζ = OpL,z(aff(z, τ0, ζ)),

Proof. We simply refer to [36, Chap. 6] where it is shown the formal computations given
above agree with the value of the operator. □

We need to compute the next term in the expansion of Au(x, z) as x→ 0. In terms of the
distribution A(x, S, z, Y ) above, this is straightforward. Indeed, we have [36, Lemma 7.1]

(4.11) Au = Affu+ x
(
(∂xA)ffu+ Aff∂xu−Dτ Âff(0)(z · ∂zu)

)
+O(x2).

Here ∂xA denotes the derivative of A(x, S, z, Y ) (in these coordinates) restricted to x = 0,
and (4.11) is derived by simply applying ∂x to (4.7) and using the chain rule. The last two
terms are computed from boundary values of A, and thus from the restricted symbol aff .
The term ∂xA, however, depends on the interior values of the symbol.
If u ∈ x−ℓC∞

ff , we set

uff := (xℓu)|ff ,
u′ff := ∂x(x

ℓu)|ff ,
so that

u = x−ℓ
(
uff + xu′ff +O(x2)

)
as x→ 0.

We also provide a more intuitive form in terms of symbols. If A = Op(a), where a =
a(x, z, x′, z′, τ, ζ)

A′
ff,r := Op(xr(∂xa+ ∂x′a)|x=x′=0) .

In particular, if A = OpL(a), then A
′
ff,r = OpL(x

r∂xa|x=0).
Then, the expansion takes a more natural form.

Lemma 4.5. Let A = Op(a) and u ∈ x−ℓC∞
ff , then

xℓ+r(Au)(x, z) = Affuff + x
(
A′

ffuff + (ℓ− 1)Dτ Âff(0)uff + Affu
′
ff

)
+O(x2) .
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Proof. We use different coordinates than Vasy, but one can check that the result is the same.
Specifically, we take

x, z, S =
1

x
− 1

x′
, Y = z − z′

1− xS
,

and we calculate that

x′ =
x

1− xS
, z − z′ = Y + xS(z − Y ) , z′ = (1− xS)(z − Y ) .

We can write (Au)(x, z) in these coordinates as

xℓ+r(Au)(x, z) =

∫
Ã(x, z, S, Y )ũ

(
x

1− xS
, (1− xS)(z − Y )

)
dS dY ,

where

ũ(x′, z′) = (x′)ℓu(x′, z′) ,

and the integral kernel Ã is given by

Ã = (2π)−(n+1)

∫
eiφxr(1− xS)ra

(
x, z,

x

1− xS
, (1− xS)(z − Y ), τ, ζ

)
dτ dζ

with φ = Sτ + Y ζ + xS(z − Y )ζ.
We also set

ã(x, z, x′, z′, τ, ζ) := xra(x, z, x′, z′, τ, ζ) .

We have that

ũ(0, z′) = uff(z
′) ,

∂x′ũ(0, z
′) = u′ff(z

′)

and

Ã(0, z, S, Y ) = (2π)−(n+1)

∫
eiSτ+iY ζ ã(0, z, 0, z − Y, τ, ζ) dτ dζ .

We calculate the derivative of Au as

∂x(x
ℓ+rAu)(0, z) =

∫
∂xÃ(0, z, S, Y )ũ(0, z − Y ) dS dY

+

∫
Ã(0, z, S, Y )(∂x − S(z − Y )∂z)ũ(0, z − Y ) dS dY .

By a straight-forward calculation using integration by parts, we obtain

∂x(x
ℓ+rAu)(0, z) =

∫
ei(Sτ+Y ζ) ((∂x + ∂x′)ã(0, z, 0, z − Y, τ, ζ)) ũ(0, z − Y ) dτ dζ dS dY

+ (ℓ− 1)

∫
ei(Sτ+Y ζ)Dτ ã(0, z, 0, z − Y, τ, ζ)ũ(0, z − Y ) dτ dζ dS dY

+

∫
ei(Sτ+Y ζ)ã(0, z, 0, z − Y, τ, ζ)∂xũ(0, z − Y ) dτ dζ dS dY

= A′
ffuff + (ℓ− 1)Dτ Âff(0)uff + Affu

′
ff .

□
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Let Q = OpL(x
−rq) for q ∈ scS0,0. The first term in the expansion is given by

Qff = OpL(q(0, 0, 0, ζ)) .

We have that xr∂xx
−ℓq(x, xz) = ∂xq(x, xz) + z∂yq(x, xz) +O(x) and consequently

Q′
ff,r = OpL(∂xq(0, 0, 0, ζ) + z∂yq(0, 0, 0, ζ)) .

Importantly, Q′
ff,r is not a Fourier multiplier.

In the case of the free Klein–Gordon operator, we have for u ∈ C∞
ff that

P0u = −(∆ +m2)uff − x(∆ +m2)u′ff +O(x2) .

Using this development of the indicial operator, we can now define the principal symbol
of a 3sc operator, essentially by putting the indicial operator together with the mf and
fiber infinity parts of the scattering principal symbol. Concretely, for A = OpL(a) ∈ 3scΨm,r,
we have the two restrictions

N̂mf,m,r(A) = ⟨τ, ζ⟩−mxra|3scT ∗
mf [X;C] ∈ C∞(3scT

∗
mf [X;C])

and

σ3sc,m,r(A) = ⟨τ, ζ⟩−mxra|3scS∗[X;C] ∈ C∞(3scS∗[X;C])

and the τ -dependent family of operators

N̂ff,r(A) ∈ C∞(Rτ ;
scΨm,0(ff)).

These three objects jointly form the 3sc-principal symbol:

(4.12)
j3sc,m,r :

3scΨm,r −→ C∞(3scTmfX)× C∞(3scS∗[X;C])× C∞(Rτ ;
scΨm,0(ff))

A 7→
(
σ3sc,m,r(A), N̂mf,m,r(A), N̂ff,m,r(A)

)
Note that we have dropped the inclusion of the ff− component of the indicial operator as
otherwise the notation becomes too cumbersome.

We note that N̂ff,r(A) is not an arbitrary element in C∞(Rτ ;
scΨm,0(ff)). Indeed, if we

define the space of symbols

Sm,r(Rn
z ;Rn+1

τ,ζ ) = {a ∈ C∞(Rn;Rn+1) : |⟨z⟩−r+|α|⟨τ, ζ⟩−m+j+|β|Dα
zD

j
τD

β
ζ a| <∞}

Then aff = x−ra|ff is a classical symbol, i.e. in Sm,0cl (Rn
z ;Rn+1

τ,ζ ) = ⟨τ, ζ⟩mC∞(Rn
z ×Rn+1

τ,ζ ) and

N̂ff,r(A) ∈ Opz(S
m,0
cl (Rn

z ;Rn+1
τ,ζ )) ⊂ C∞(Rτ ;

scΨm,0(ff)).

In Section 4.4 below, we discuss the consequences of the fact that the indicial operator
N̂ff,r(A) is in fact a semiclassical-scattering operator in h = ±1/τ as τ → ±∞. These are
exactly the symbols, defined for m, r, k ∈ R, by
(4.13)

Sm,r,kscl,sc,±1/τ (R
n) =

{
a ∈ C∞(Rn

z × Rn
µ × Rτ ) : |Dα

zD
β
µD

j
ha| ≲ ⟨µ⟩m−|β|⟨z⟩r−|α|h−k ∀α, β, j

}
,

where h = 1/⟨τ⟩. In our case we often write Sm,r,kscl,sc,±1/τ (ff) as the operators we consider are

more naturally viewed as functions on ff = Rn
z . Then their quantizations are

(4.14) Ψm,r,k
scl,sc,±1/τ = OpL,scl(S

m,r,k
scl,sc,±1/τ ).
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This definition admits an obvious generalization to the case that Rn is an arbitrary scat-
tering manifold is straightforward. In Proposition 4.7 below we show that for A ∈ 3scΨm,r,
N̂ff,r(A) ∈ Ψm,0,m

scl,sc,±1/τ .

We note that, for OpL(a) = A ∈ 3scΨm,r, the indicial operator N̂ff,r(A) is equivalent

to the data aff = x−ra|3scT ∗
ffX

(since aff(z, τ, ζ) is the left reduction of N̂ff,r(A)(τ)). Thus

j3sc,m,r(A), like the scattering symbol in Section 2, is still given by the restriction data of
the (appropriately weighted) symbol. Thus, it is automatic that the three components of
j3sc,m,r(A) satisfy matching conditions at the intersections of the boundary hypersurfaces of
3scT

∗
[X;C], i.e. ⟨τ, ζ⟩−maff(z, τ, ζ), N̂mf,m,r(a) and σ3sc,m,r(a) are equal on the restriction to

their common boundaries (see (4.15).)
Conversely, we have the following proposition, which tells us that we can quantize a

3sc-principal symbol provided the appropriate matching conditions of the three symbol com-
ponents are satisfied, where again we do not include the ff− component.

Proposition 4.6. Let

(a1, a2, Aτ ) ∈ C∞(3scS∗[X;C])× C∞(3scT
∗
mfX)×Ψm,0,m

scl,sc,±1/τ

and let OpL,z(a0) = Aτ , i.e. let a0(z, τ, ζ) be the τ -dependent family of symbols quantizing
Aτ ∈ scΨm,0(Rn). Then there is A ∈ 3scΨm,0(Rn+1) with j3sc,m,0(A) = (a1, a2, Aτ ) if and only

if ⟨τ, ζ⟩−ma0 ∈ C∞(ff ×Rn+1
τ,ζ ) and

(4.15)
a1|3scS∗

mf [X;C] = a2|3scS∗
mf [X;C], ⟨τ, ζ⟩−ma0|3scS∗

ff [X;C] = a1|3scS∗
ff [X;C]

⟨τ, ζ⟩−ma0|3scT ∗
ff ∩mf [X;C] = a2|3scT ∗

ff ∩mf [X;C]

This follows from the simple fact that the agreement of the functions a1, a2 and ⟨τ, ζ⟩−ma0
implies the existence of a function a extending all three functions; then A = OpL(⟨τ, ζ⟩ma)
is the desired operator. Note that in this case, with aff in (4.9) that

a0 = aff .

We now discuss multiplicativity of j3sc, using the composition theorem [36, Proposition
5.2]:

Proposition 4.7. Let A ∈ 3scΨm1,r1(X) and B ∈ 3scΨm2,r2(X). The composition is well-
defined as an operator

A ◦B ∈ 3scΨm1+m2,r1+r2(X)

and

(A ◦B)∂ = A∂B∂ .

Applying the latter equation to the conjugated operators in (4.4), we see that the indicial
operator of a composition is the composition of the indicial operators. Summarizing these
considerations, we obtain the basic features of the 3sc-principal symbol.

Proposition 4.8. The kernel of the mapping of the principal symbol mapping (4.12) is
exactly 3scΨm−1,r−1, while the image is the set of those (q1, q2, {Qτ}) such that, with q0 the left

reduction of Qτ , we have ⟨τ, ζ⟩−mq0 ∈ C∞(ff ×Rn+1
τ,ζ ) and the matching condition (4.15) hold.
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Moreover, the mapping j3sc is multiplicative (but not commutative): for A ∈ 3scΨm1,r1 , B ∈
3scΨm2,r2

j3sc,m1+m2,r1+r2(AB) = j3sc,m1,r1(A)j3sc,m2,r2(B) ,

where the product denotes component wise composition (i.e. multiplication in the first two
components).

Proof. Because this is merely a statement about restriction of the symbol to boundary com-
ponents of 3scT

∗
[X;C], the only parts of the proposition that require attention are: (1) the

multiplicativity of the symbol, which follows from Proposition 4.7 and (2) the statement that
the indicial family lies in Ψm

scl,sc,±1/τ . The latter is precisely the content of Section 4.4. □

Remark 4.9. These propositions clarify that we cannot quantize any family of semiclassical
scattering operators to be the indicial family of a 3sc-operator. In fact, the left reduction

aff(z, τ, ζ) of the indicial operator N̂ff(A)(τ) is smooth on ff ×Rn+1
τ,ζ , its fiber symbol, being

the restriction to fiber infinity on each {τ = const.} slice, is independent of τ , i.e. with fibeq
as in (3.14),

σsc

(
N̂ff(A)ff(τ)

)
≡ σ3sc(A)|ff × fibeq ∈ C∞(ff × fibeq).

Here we use the τ dependent weight

(4.16) σsc

(
N̂ff(A)ff(τ)

)
= ⟨τ, ζ⟩−maff(z, τ, ζ)|ff ×∂Rn+1

τ,ζ

Lemma 4.10. Let A ∈ 3scΨm,r, then A∗ ∈ 3scΨm,r with

j3sc(A
∗) = j3sc(A)

∗ ,

meaning that

σ3sc(A
∗) = σ3sc(A) ,

N̂mf(A
∗) = N̂mf(A) ,

N̂ff(A
∗) = N̂ff(A)

∗ .

Proof. The fact that the adjoint is again a 3sc-operator is a simple consequence of the
definition via the 3sc-double space in Vasy [36, Eq. 3.13] and the principal symbol can be
easily calculated using quantized symbols. □

Remark 4.11. Finally, we remark that in the above definitions of principal symbols, it is pos-
sible to replace ⟨τ, ζ⟩−1 by any smooth boundary defining function ρfib of the fiber boundary.
We used ⟨τ, ζ⟩−1 to be explicit but all factors of using a ρfib which is equal to 1/τ near the
characteristic set is also useful.

4.3. Commutators. For two 3sc-operators A ∈ 3scΨm1,r1 , B ∈ 3scΨm2,r2 the commutator in
general does not decrease in order, i.e. in general [A,B] ̸∈ 3scΨm1+m2−1,r1+r2−1. For example,
if A = Dz and B = f(z) for some function f ∈ S0(Rn

z ), then [A,B] is the multiplication
operator by Dzf , which is a 3sc-operator of order (0, 0), since there is no decay in t.
The commutator drops in order exactly if the indicial operators commute,

[N̂ff(A), N̂ff(B)] = 0,

which is not the case in the previous example.



CAUSAL PROPAGATORS FOR THE KLEIN-GORDON EQUATION 43

Let A ∈ 3scΨm,r. We say that A is in the 3sc-centralizer,

A ∈ Z3scΨm,r if and only if [A,B] ∈ 3scΨm+m′−1,r+r′−1

for all B ∈ 3scΨm′,r′ . This is equivalent to the condition that

N̂ff,r(A)(τ) = f(τ) Id ,(4.17)

for some f ∈ C∞(W⊥) (cf. Vasy [36, Lemma 6.5]).
Now, we will calculate the indicial operator of the commutator [A,B] in the case that

[N̂ff(A), N̂ff(B)] = 0. For this we calculate the Taylor expansion of [A,B]u at x = 0.

Lemma 4.12. Let A ∈ 3scΨm1,r1 , B ∈ 3scΨm2,r2 and u ∈ C∞
ff , then

xr1+r2 [A,B]u(x, z) = [Aff , Bff ] + x
(
[A′

ff −Dτ Âff(0), Bff ] + [Aff , B
′
ff −Dτ Âff(0)]

)
uff

+ x[Aff , Bff ](∂xu)ff +O(x2) .

Proof. We use Lemma 4.5 to see that

xr1+r2ABu(x, z) = AffBffuff + x
(
A′

ffBff + (r2 − 1)Dτ Âff(0)Bff + AffB
′
ff − AffDτ B̂ff(0)

)
uff

+ xAffBffu
′
ff +O(x2) .

Therefore,

[A,B]u(x, z) = [Aff , Bff ] + x
(
[A′

ff −Dτ Âff(0), Bff ] + [Aff , B
′
ff −Dτ Âff(0)]

)
uff

+ x
(
r2Dτ Âff(0)Bff − r1Dτ B̂ff(0)Aff

)
uff

+ x[Aff , Bff ]u
′
ff +O(x2) .

□

Proposition 4.13. If A ∈ 3scΨm1,r1 , B ∈ 3scΨm2,r2 with [N̂ff,r1(A), N̂ff,r2(B)] ≡ 0, then

N̂ff,r1+r2−1([A,B])(τ) = [Â′
ff(τ)−Dτ Âff(τ), B̂ff(τ)] + [Âff(τ), B̂

′
ff(τ)−Dτ B̂ff(τ)]

+ r2Dτ Âff(τ)B̂ff(τ)− r1Dτ B̂ff(τ)Âff(τ) .

If Q = OpL(x
−rq) for q ∈ scS0,0 supported in a neighborhood of NP and P0 = D2

t − (∆ +
m2), then

N̂sc(i[P0, Q]) = xr−1Hp(x
−rq)|x=0 = −2xr (τx∂x + (ζ + τy)∂y)x

−rq|x=0

= 2rτq|x=0 − 2(ζ + τy)∂yq|x=0 .

At the north pole we have that

N̂sc(i[P0, Q])|NP = 2rτq(0, 0, τ, ζ)− 2ζ∂yq(0, 0, τ, ζ) .

We can recover this from Lemma 4.12 as follows: we have that

Q̂ff(τ) = OpL(q(0, 0, τ, ζ)) ,

Q̂′
ff(τ) = OpL(∂xq(0, 0, τ, ζ) + z∂yq(0, 0, τ, ζ)) ,

(P̂0)ff(τ) = τ 2 − (∆ +m2) ,

(P̂0)
′
ff(τ) = 0 .
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Since the indicial operator of a sc-operator is a Fourier multiplier, we have that

[(P̂0)ff(τ0), Q̂ff(τ0)] = 0.

We have that

N̂ff,r−1(i[P0, Q])(τ) = [τ 2 − (∆ +m2), Q̂′
ff(τ)] + 2rτQ̂ff(τ)

= −2OpL(ζ∂yq(0, 0, τ, ζ)) + 2rτ OpL(q(0, 0, τ, ζ)) .

This is a special case of the general identity

N̂ff,r1+r2−1(i[A,B])(τ) = OpL(N̂sc(x
r1+r2Ha(b))|NP)

for A = OpL(a) ∈ scΨm1,r1 and B = OpL(b) ∈ scΨm2,r2 .

4.4. The indicial operator as a semiclassical scattering operator. Two features of
semiclassical scattering operators will be crucial in our work below, namely, we will need,
for A ∈ 3scΨm,r(Rn+1).

• to understand how the semiclassical scattering principal symbol of N̂ff,r(A) can be

seen as a function on certain parts of 3scT
∗
[X;C], and

• to recall mapping properties of N̂ff,r(A) on semiclassical Sobolev spaces.

The former is used in formulating ellipticity of A at ±∞ ∈ W⊥, while the latter is used
crucially in that part of the propagation estimates in Sections 6 and Section 7 below in
which the indicial operator of the relevant commutator for the free Klein-Gordon operator
P0 is compared to that of PV .
For background on semiclassical analysis we refer to [7, 43]. Our work below follows more

closely the discussion of smooth semiclassical pseudodifferential operators found in [39].
We work with semiclassical-scattering PsiDO’s of order m, l, r, specifically with (classical,

smooth) elements in Ψm,r,k
scl,sc , which are (by definition) semiclassical quantizations of symbols

ã ∈ h−kC∞([0, 1)h × Sm,rsc (Rn)), i.e. operators

B(h) = Opscl(ã) =
1

hn/2

∫
ei

z−z′
h

·µã(z, µ;h)dµ

where hka(z, µ;h) is a family of scattering symbols of order m, r that is smooth in h ∈ [0, 1).
Given A ∈ 3scΨm,r, recalling aff from (4.9), the fact that, for

h = ±τ, µ = ζ/τ, as τ → ±∞.

the symbol

(4.18) ã(z, µ;h) = aff(z, 1/h, µ/h)

is semiclassical can be seen by relating the radial compactification Rn+1
τ,ζ to the semiclassical

symbol space by blowing up the τ = 0 equator of ∂Rn+1
τ,ζ .

Here, given A ∈ 3scΨm,r, the value of the principal symbol τ = +∞ will be the semiclassical
principal symbol of OpL(aff) = Âff,r(τ), i.e. the function of z, µ = ζ/τ given by the limit
limτ→+∞,µ=ζ/τ ⟨τ, ζ⟩−maff(z, τ, ζ). Provided the restriction makes sense (which it does for
classical symbols) this is exactly

⟨τ, ζ⟩−mxra|h=1/τ=0=x,τ>0(z, µ)
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τ = ∞

UH+

W⊥

Figure 4. The upper half sphere UH+.

This is just the restriction to the interior of the upper half-sphere in fiber infinity over ff.
Thus, since ⟨τ, ζ⟩−mxra is a smooth function on the whole of 3scT

∗
[X;C], if we define

(4.19) UH+ = 3scS∗
ff [X;C] ∩ cl({τ ≥ 0}),

we obtain the following:

Lemma 4.14. Let OpL(a) = A ∈ 3scΨm,r and aff = (xra)|ff . Then ã in (4.18) lies in the

semiclassical symbol space h−mC∞([0, 1)h × Sm,0). Thus, N̂ff,r(A)(τ) ∈ Ψm,0,m
scl,sc,±1/τ , the space

defined in (4.14).

For fixed h = 1/τ0 = 0, the scattering symbol jsc,m,0(N̂ff,r(A)(τ0)) satisfies

σsc,m,0(N̂ff,r(A)(τ0)), = ⟨τ0, ζ⟩−maff |ff × fibeq

N̂sc,m,0(N̂ff,r(A)(τ0)) = ⟨τ0, ζ⟩−maff |∂ ff ×{τ=τ0}.

The semiclassical symbol at h = 1/τ = 0 satisfies

(4.20) σscl,h=1/τ (N̂ff,r(A)(1/h)) = ⟨τ, ζ⟩−maff |UH+ .

and similarly for h = −1/τ and UH−.

Proof. The function aff satisfies ⟨τ, ζ⟩−maff ∈ C∞(ff ×Rn+1
τ,ζ ). In regions of the form −C <

τ < C, the lemma asserts only that N̂ff,r(A)(τ) = OpL,z(aff(z, τ, ζ)) is a scattering operator
of order m, which follows since on each slice τ = 0 the restriction of a0 is scattering of order
m.

For regions of unbounded τ , we consider the blown up space

(4.21) βscl : [Rn+1
τ,ζ ; fibeq] −→ Rn+1

τ,ζ .

In this manifold with corners, the set cl(β−1
scl {τ > 1}) is diffeomorphic to [0, 1)1/τ × Rn

µ=ζ/τ

and thus smooth functions on the blown-up space define classical semiclassical scattering op-

erators in h = 1/τ as τ → ∞. Now, β−1
sc (⟨τ, ζ⟩−ma0) is smooth on the whole of [Rn+1

τ,ζ ; fibeq]
(because pullbacks of smooth functions via a blow down map are smooth) and thus the re-
striction to τ > 1 is smooth. But in that region ⟨τ, ζ⟩−1 ∼ ⟨µ⟩−1(1/τ), so in face τ−m⟨µ⟩−ma0
is smooth, which is what we wanted.

The same goes for h = −1/τ as τ → −∞, i.e. cl(β−1
scl {τ < −1}) = [0, 1)−1/τ ×Rn

µ=ζ/τ . □
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Given the lemma, it makes sense to extend N̂ff,r(A)(τ) to h = 1/τ = 0 as the semiclassical

symbol of N̂ff,r(A) at h = 0. Indeed, we define W⊥ to be the radial compactification of W⊥.
Thus, over NP, it is

(4.22) Rτ = Rτ ∪ {±∞}.
We then extend N̂ff,r(A) to W⊥ be defining

(4.23) N̂ff,r(A)(±∞) := ⟨τ, ζ⟩−maff |UH±

This leads to a natural notion of ellipticity for A at +∞ ∈ W⊥, namely that N̂ff,r(A) be
semiclassically elliptic at h = 1/τ = 0, i.e. its semiclassical symbol is nowhere zero. See
Definition 4.18 and after.

We recall that the semiclassical Sobolev space is defined as (cf. Zworski [43, Section 8.3])

Hs,ℓ
scl (R

n) := {u ∈ S ′(Rn) : ⟨ζ⟩sFh(⟨z⟩ℓu) ∈ L2(Rn)} ,(4.24)

∥u∥2
Hs,ℓ

scl

:= (2πh)−n
∫
⟨ζ⟩2s|Fh(⟨z⟩ℓu)(ζ)|2 dζ .(4.25)

Here,

(Fhu)(ζ) :=

∫
e−

i
h
⟨z,ζ⟩u(z) dz

denotes the semiclassical Fourier transform.
Semiclassical scattering operators are bounded on semiclassical Sobolev spaces:

Proposition 4.15. If A ∈ Ψm,r,k
scl,sc , then extends as a bounded operator

A : hkHm+s,r+ℓ
scl −→ Hs,ℓ

scl .

We also recall that for semiclassical operators ellipticity implies invertibility since we can
bound the error term in the parametrix construction by the semiclassical parameter and
then use a Neumann series to show invertibility (see Zworski [43, Theorem 4.29]).

Proposition 4.16. Let A = A(h) ∈ Ψm,r,k
scl,sc be elliptic, then there exists h0 > 0 such that for

all h ∈ (0, h), A(h)−1 exists as a bounded operator

A(h)−1 : Hs,ℓ
scl −→ hkHm+s,r+ℓ

scl .

4.5. Wavefront sets and elliptic sets. We now develop an appropriate notion of operator
wavefront set in this context. We note that there are distinct notions of operator wavefront
set even in the original works on the 3sc-calculus. Given A ∈ 3scΨm,r(X), there is 3scWF(A)
and scWF(A), the former from Definition 9.1 of [36] and the latter from Definition 5.1 of
[37]. Both of these do not treat fiber infinity over ∂X, so our notion of wavefront set must
generalize these. Rather than recalling both in detail, we give one definition of operator
wavefront set, which we will denote by 3scWF(A).
First we point out the source of subtlety in the definition of operator wavefront set in this

context. We wish in particular to have a notion of wavefront set 3scWF′ such that for all
A,B ∈ 3scΨ we have that

(4.26) 3scWF′(AB) ⊂ 3scWF′(A) ∩ 3scWF′(B).

The issue arises at points α ∈ 3scT [X;C] lying over the intersection of mf and ff, that
is, α ∈ 3scT ∗

mf ∩ff [X;C]. A natural notion of wavefront may assert that α is not in the



CAUSAL PROPAGATORS FOR THE KLEIN-GORDON EQUATION 47

wavefront set of OpL(a) = A if a vanishes to infinite order in a neighborhood of α. But any

neighborhood U of α in 3scT has that U ∩ 3scT
∗
ff [X;C] is non-empty and open. But the global

nature of N̂ff,r(A) means that the symbol of A2 is not necessarily trivial in U ∩ 3scT
∗
ff [X;C]

if a is.
To avoid this issue we essentially do not include points in mf ∩ff in the operator wavefront

set. Rather, as we describe in detail now, away from C we use the scattering definition of
3scWF′ and over ff only look at τ levels. We define

(4.27) scṪX =
(
scT

∗
X \ scT

∗
CX
)
∪W⊥,

the compactification of the compressed scattering cotangent bundle from Section 5 of [37]. In
that paper, interpreted in our context, defines the compressed scattering cotangent bundle
to be

scṪX = (scT ∗X \ scT ∗
CX) ∪W⊥,

i.e. not compactified. This space has a mapping

(4.28) π⊥ : scT ∗X −→ scṪ ∗X

which is identity everywhere except on T ∗
CX where it is projection onto W⊥ (which is just

the mapping (τ, ζ) 7→ τ on the fiber.)
We now define the operator wavefront set 3scWF′(A) of a 3sc-PsiDO A. We follow [37] here

as opposed to [36] here as there are two different definitions, and we indicate the difference.
Given A ∈ 3scΨm,r, j3sc,m,r(A) is defined as a function on the set from [36, Eq. 9.1]

C3sc[X;C] := 3scS∗[X;C] ∪ 3scT
∗
mf [X;C] ∪W⊥ .(4.29)

Its value on these three components are exactly the three components of j3sc,m,r(A). However,

as described above, points at the boundary of 3scT
∗
ffX are problematic when considered as

part of the operator wavefront set. Thus we instead define what is effectively the locus in
scṪ

∗
X which avoids those points in C3sc[X;C], namely

Ċ3sc[X;C] := scS∗
X\CX ∪ scT

∗
∂X\CX ∪W⊥(4.30)

and use this to define both 3scWF′ and 3scEll below.
Since 3scWF′(A) will specify points in 3scT

∗
[X;C] near which the left symbol a is rapidly

decreasing, we need a mechanism for relating subsets of Ċ3sc[X;C] to subsets of 3scT
∗
[X;C].

This will work by associating scT
∗
X \ scT

∗
CX naturally to its image via the blow-down βC ,

while points W⊥ will correspond to the natural τ slices over ff.
Thus, we define

γ3sc : Ċ3sc[X;C] −→ P(∂3scT
∗
[X;C])(4.31)

as

γ3sc(p) = {p} for p ∈ scS∗
X\CX ∪ scT

∗
∂X\CX ,

γ3sc(τ) = β−1
C (π⊥)−1{τ} for τ ∈ W⊥ ,

γ3sc(±∞) = UH± for ±∞ ∈ ∂W⊥ .
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By abuse of notation, for a set S ⊂ Ċ3sc[X;C] we write

γ3sc(S) :=
⋃
p∈S

γ3sc(p) .(4.32)

We used above that scS∗
X\CX ∪ scT

∗
∂X\CX is naturally identified with 3scS∗

[X;C]\ff [X;C] ∪
3scT

∗
∂[X;C]\ff [X;C] via the blow down map.

The topology on scṪX is that in which a neighborhood basis near α ∈ W⊥ is induced

by the open neighborhoods of γ3sc(α), while in
scṪX, open sets around boundary points are

defined as usual for radial compactifications.
For a symbol a ∈ 3scSm,r, we define the essential support 3sc ess-supp(a) ⊂ ∂3scT

∗
[X;C]

by declaring p ∈ 3sc ess-supp(a)c if and only if there exists U ⊂ 3scT
∗
[X;C] open and χ ∈

C∞
c (3scT

∗
[X;C]) such that p ∈ U , χ|U ≡ 1 and χa ∈ 3scS−∞,−∞.

Definition 4.17. Let A = OpL(a) ∈ 3scΨm,r(X). The operator wavefront set

3scWF′(A) ⊂ Ċ3sc[X;C]

is defined as follows: a point p ∈ Ċ3sc[X;C] is not in the wavefront set,

p ∈ 3scWF′(A)c if and only if γ3sc(p) ∩ 3sc ess-supp(a) = ∅ .

Moreover, we define

WF′
fib(A) :=

3scWF′(A) ∩ scS∗
X\CX ,

WF′
mf(A) :=

3scWF′(A) ∩ scT
∗
∂X\CX ,

WF′
ff(A) :=

3scWF′(A) ∩W⊥ .

We can write the complements of each of the components as

WF′
fib(A)

c = {α ∈ scS∗
X\CX : ∃U ⊂ scS∗

X\CX open such that α ∈ U

and a(A) vanishes to infinite order on U} ,
WF′

mf(A)
c = {α ∈ scT

∗
∂X\CX : ∃U ⊂ scT

∗
∂X\CX open such that α ∈ U

and a(A) vanishes to infinite order on U} ,
WF′

ff(A)
c = {τ ∈ W⊥ : ∃ ϵ > 0 such that a(A) vanishes to

infinite order on β−1(π⊥)−1[τ − ϵ, τ + ϵ]}
∪ {±∞ : ∃ open U ⊂ ∂3scT

∗
[X;C] such that UH± ⊂ U

and a(A) vanishes to infinite order on U}.
Now we define the elliptic sets. Over mf and fiber infinity, the definition of ellipticity is

exactly as in the standard scattering case, i.e. non-vanishing (or, for operators acting on
sections of vector bundles, invertibility) of the principal symbol. Over ff in W⊥, the correct
notation of ellipticity is invertibility between appropriate scattering Sobolev spaces.

To define the elliptic set, we note that the two components of the symbol σ3sc,m,r(A) and

N̂mf,m,r(A) define, by restriction, functions on scS∗
X\CX and scT

∗
∂X\CX, respectively.
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Definition 4.18. Let A ∈ 3scΨm,r. The 3sc-elliptic set 3scEll(A) (whose m, r dependence is
suppressed from the notation) is

3scEll(A) = Ellfib(A) ∪ Ellmf(A) ∪ Ellff(A) ⊂ Ċ3sc[X;C] ,

with

Ellfib(A) = {α ∈ scS∗
X\CX : σ3sc,m,r(A)(α) ̸= 0} ,

Ellmf(A) = {α ∈ scT
∗
∂X\CX : N̂mf,m,r(A)(α) ̸= 0} ,

while

Ellff(A) = {τ ∈ W⊥ : N̂ff,r(A)(τ) is scattering elliptic and invertible}
∪ {±∞ ∈ ∂W⊥ : σ3sc,m,r(A) is nowhere vanishing on UH±}.

Moreover, we set

3sc Char(A) := Ċ3sc[X;C] \ 3scEll(A) ,(4.33)

the 3sc-characteristic set of A.

Note that it makes sense to speak of invertibility of scattering elliptic operators. Indeed,
if B ∈ scΨm,r is (scattering) elliptic then B : Hm+s,r+ℓ

sc −→ Hs,ℓ
sc is Fredholm. By scattering

ellipticity, its kernel and cokernel consist of Schwartz functions, and therefore the invertibility
of this Fredholm mapping is independent of s, ℓ, i.e. if it is invertible for any s, ℓ then it is
invertible for all s, ℓ. Thus, we say a (globally) elliptic, scattering operator B ∈ scΨm,r is
“invertible” if any (and thus all) of these Fredholm operators is invertible.

We now describe in more detail the significance of τ0 ∈ Ellff(A) and±∞ ∈ Ellff(A). For the

former, we first consider the assumption that N̂ff,r(A)(τ0) is scattering elliptic. Recall that

if OpL(a) = A, then N̂ff,r(A)(τ0) = OpL,z(aff) (4.10). Our discussion of symbols in Section

4.2 allows us to identify the scattering principal symbol of Âff,r(τ) with the appropriate
boundary restrictions of a; following Remark 4.9, choosing τ−dependent defining function
we have

jsc,m,0(Âff,l(τ0)) = (⟨τ, ζ⟩−maff |ff × fibeq, ⟨τ, ζ⟩−maff |3scT ∗
ff ∩mf∩{τ=τ0}).

Thus if τ0 ∈ Ellff(A) then these two components are nowhere vanishing, and the scattering

operator N̂ff,r(A)(τ0) is invertible.

As for the condition +∞ ∈ Ellff(A) (the − case is similar) this is equivalent to N̂ff,r(A)
being semiclassically elliptic as τ = 1/h → +∞. Indeed, we have ⟨τ, ζ⟩−mxra is invertible

on the whole of UH+. For A ∈ 3scΨm,r, the indicial operator N̂ff,r(A)(τ) is a semiclassical

scattering PsiDO with semiclassical principal symbols at τ = ±∞, so ellipticity at +∞ ∈ W⊥

(over ff+) is exactly the condition that

σscl,m(N̂ff,r(A)) = xr⟨τ, ζ⟩−ma|UH+

is nowhere vanishing.
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4.6. Elliptic regularity. We have the following microlocal parametrix theorem, which ex-
tends Lemma 9.3 and Remark 9.4 from Vasy [36] to include fiber infinity.

Proposition 4.19. Let A ∈ 3scΨm,r(X) and K ⊂ 3scEll(A) be compact. Then there exists
G ∈ 3scΨ−m,−r(X) such that

K ∩ 3scWF′(AG− Id) = K ∩ 3scWF′(GA− Id) = ∅ .

Proof. We include only the construction for +∞ ∈ W⊥.

Let +∞ ∈ Ellff(A). Let aff = xra|ff , so aff ∈ ⟨τ, ζ⟩mC∞(ff ×Rn+1
τ,ζ ). The ellipticity condi-

tion at +∞ is exactly that ⟨τ, ζ⟩maff |UH+ is invertible. This implies that Âff,r(τ) is invertible
for sufficiently large τ > τ0 for τ0 ≫ 0 fixed by Proposition 4.16. We will show that one can
quantize Âff(τ)

−1 to a 3sc operator, and use this to perform a parametrix construction for

A near +∞ ∈ W⊥.
Let UH+ ⊂ U ⊂ U ′ where U,U ′ are open sets such that: (1) ⟨τ, ζ⟩maff is invertible on

U ′ and (2) there exists χ ∈ C∞(ff ×Rn+1
τ,ζ ) with χ|U ≡ 1 and suppχ ⊂ U ′. (The second

condition is easily achievable since UH+ is an embedded p-submanifold of ff ×∂Rn+1
τ,ζ ).) One

can, in particular, arrange that χ = χ(τ, ζ) (since UH+ = ff ×{τ ≥ 0} ∩ ∂Rn+1
τ,ζ )) and that

χ(τ) ≡ 1 for τ > τ0 for some fixed τ0. Then

χa−1
ff ∈ ⟨τ, ζ⟩−mC∞(ff ×Rn+1

τ,ζ ),

and thus OpL,z(χa
−1
ff ) ∈ Ψ−m,0,−m

scl,sc,±1/τ . Moreover, if q ∈ C∞(ff ×Rn+1
τ,ζ ) has supp q ⊂ U , then

q(χa−1
ff aff − 1) ≡ 0 and thus

OpL,z(q)(OpL,z(χa
−1
ff )Âff,r − 1) ∈ Ψ−1,0,−1

scl,sc,±1/τ

The preceding is the first step in a semiclassical-scattering parametrix construction which

yields g̃ ∈ ⟨τ, ζ⟩−mC∞(ff ×Rn+1
τ,ζ ), such that

OpL,z(q)(OpL,z(g̃)Âff,r − 1) ∈ Ψ−∞,0,−∞
scl,sc,±1/τ .

Indeed, following the standard elliptic parametrix construction, if g0 has

E = OpL,z(q)(OpL,z(gN)Âff,r − 1) ∈ Ψ−N,0,−N
scl,sc,±1/τ ,

then one can solve −bNaff = σscl,sc,−N,0,−N(E) on the support of χ and then take a Borel sum
to obtain g̃.
Letting χτ0 ∈ C∞(R) have χτ0(τ) = 1 for τ > τ0 + 1 and suppχτ0 ⊂ [τ0,∞), then

K̂(τ) := χτ0(τ)
(
Â−1

ff,r −OpL,z(g̃)
)
∈ Ψ−∞,0,−∞

scl,sc,±1/τ ,

(This follows from the argument [30] used in the proof of Corollary 4.21, where one compares
the parametrix and actual operator and shows they differ by a residual operator.) But this
implies that

(1− χτ0)g̃ + χτ0(τ)a
−1
ff ∈ ⟨τ, ζ⟩−mC∞(ff ×Rn+1

τ,ζ ),

Indeed, this follows since g̃ ∈ ⟨τ, ζ⟩−mC∞(ff ×Rn+1
τ,ζ ) and χτ0(τ)a

−1
ff − g̃ is order −∞, 0,−∞.

Thus

Ĝ := (1− χτ0)OpL,z(g̃) + χτ0(τ)A
−1
ff,r ∈ Ψ−m,0,−m

scl,sc,±1/τ ,
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and

Ĝ−OpL,z(g̃) ∈ Ψ−∞,0,∞
scl,sc,±1/τ .

To quantize this Ĝ to a full 3sc-PsiDO, we need to prescribe matching values on the other
faces 3scT

∗
ff [X;C] and mf of 3scT

∗
ff [X;C], but this is easily done. Indeed, the symbols of G,

OpL,z(g), and a
−1
ff agree at fiber UH+ (meaning concretely that when multiplied by ⟨τ, ζ⟩m

they restrict to the same function there) and thus in a sufficiently small neighborhoods

V ⊂ V ′ of UH+ in 3scT
∗
ff [X;C] ∪mf one can choose another cutoff χ′ which is 1 on V and

supported in V ′, and let g = χa−1
ff on V . Then this g matches the principal symbol of Ĝ and

thus there is a smooth function which we also call g on the whole of 3scT
∗
[X;C] such that

OpL(x
−rg) = G ∈ 3scΨ−m,r,m and: (1) g = a−1

ff on V , Ĝff(τ) = Ĝ(τ) = Â−1
ff (τ) for τ > τ0.

Thus for Q ∈ 3scΨ0,0,0 close to UH+,

E = Q(GA− I) ∈ 3scΨ−1,−1,−1.

This is the first step in a parametrix construction which produces a residual error. In-
deed, to find G1 ∈ 3scΨ−m−1,−r−1 such that G1A + E ∈ 3scΨ−2,−2,−2 near UH+, one solves
(Ĝ1)ff,−r−1Âff,r = Êff,−1, i.e. (Ĝ1)ff,−r−1 = Êff,−1Â

−1
ff,l, for τ > τ0. We have already seen

that Â−1
ff,r can be approximated in Ψ−∞,0,−∞

scl,sc,±1/τ by an operator in Ψ−m,0,−m
scl,sc,±1/τ , so again using

the ellipticity on near UH+ on the other bhs’s of 3scT
∗
[X;C], we have G1. The inductive

construction of the higher order approximations is standard. □

From the elliptic parametrix construction we obtain elliptic estimates. We now record
these estimates and use them to discuss an important application to a specific globally
elliptic 3sc-operator.

Proposition 4.20. Let u ∈ S ′ and A ∈ 3scΨm,r. Let B,Q′ ∈ 3scΨ0,0. If 3scWF′(B) ⊂
3scEll(A)∩ 3scEll(Q′), then Q′Au ∈ Hs−m,ℓ−r

sc implies Bu ∈ Hs,ℓ
sc , and for any M,N ∈ R there

is C > 0 such that

∥Bu∥s,ℓ ≤ C (∥Q′Au∥s−m,ℓ−r + ∥u∥−N,−M) .

Proof. This follows from the standard argument using the mapping property in Proposition
4.3. Namely, Let G be as in Proposition 4.20 with respect to K = 3scWF′(B). Then

∥Bu∥s,ℓ ≤ ∥(GA− I)Bu∥s,ℓ + ∥GABu∥s,ℓ
≤ ∥(GA− I)Bu∥s,ℓ + ∥G(Id−Q′)ABu∥s,ℓ + ∥GQ′ABu∥s,ℓ
≤ C (∥Q′Au∥s−m,ℓ−r + ∥u∥−N,−M) .

where we used Proposition 4.3 and (4.26). □

Thus an operator A ∈ 3scΨm,r that is globally elliptic satisfies the (global) elliptic estimate,
namely that for any M,N ∈ R, there is C > 0 such that,

(4.34) ∥u∥s,ℓ ≤ C(∥Au∥s−m,ℓ−r + ∥u∥−N,−M).

In particular, as have now established, there are global parametrices G,G′ ∈ 3scΨ−m,−r such
that

(4.35) GA− I, AG′ − I ∈ 3scΨ−∞,−∞.

We use these parametrices in the corollary below.



52 D. BASKIN, M. DOLL, AND J. GELL-REDMAN

In order to define microlocalizers over ff, we will need an operator which is globally elliptic
and commutes with PV0 . To accomplish this, we switch the signs in PV0 to make it elliptic;
that is, we consider, for E ≥ 0,

(4.36) D2
t +HV0 + E

We will use the inverse of this operator below to define such microlocalizers in Section 5.1.
Specifically, we will need:

Corollary 4.21. The operator D2
t +HV0 + E is invertible for some E ≥ 0, and

(D2
t +HV0 + E)−1 ∈ 3scΨ−2,0(Rn+1).

Proof. The operator D2
t + HV0 + E is elliptic on mf and fiber infinity for any E > 0. The

indicial operator is

τ 2 +HV0 + E

and this operator is invertible for all τ for E sufficiently large. Indeed, all negative elements
in the spectrum of ∆z +V0(z) are eigenvalues. This means that for −E < 0 in the spectrum
of ∆z +m2 + V0, there exists w ∈ L2(Rn

z ) such that

(HV0 + E)w(z) = 0 .

But then by scattering ellipticity of HV0 + E, w ∈ S. On the other hand, for all Schwartz
w,we can integrate by parts to obtain

⟨(∆z +m2 + V0)w,w⟩ =
∫
|∇zw|2 + ⟨V0w,w⟩+ (m2 + E)|w(z)|2dz.

Since ⟨V0w,w⟩ ≥ −ϵ/2|V0w|2 − (1/2ϵ)|w|2 and we can bound |V0w| ≤ C(|∇zw|2 + |w|2), we
obtain a lower bound, for ϵ > 0 sufficiently small and E sufficiently large,

⟨(∆z +m2 + V0 + E)w,w⟩ ≥ 1

2

∫
|∇zw|2 + (m2 + E)|w(z)|2dz > 0

for all Schwartz w. Thus for E sufficiently large, N̂ff(D
2
t +HV0 + E)(τ) is invertible for all

τ , hence D2
t +HV0 + E is globally 3sc-elliptic.

On the other hand, by the same integration by parts argument, D2
t +HV0 +E is positive

for E sufficiently large, hence is invertible.
To show that (D2

t +HV0 +E)
−1 ∈ 3scΨ−2,0, we employ an argument from [30]. Namely, by

global ellipticity, we have parametrices G,G′ for (D2
t +HV0 +E)−1 as in (4.35), and writing

G(D2
t +HV0 + E)− I = K and (D2

t +HV0 + E)G′ − I = K ′ we obtain

(D2
t +HV0 + E)−1 = (G(D2

t +HV0 + E) +K)(D2
t +HV0 + E)−1((D2

t +HV0 + E)G′ +K ′)

= G((D2
t +HV0 + E)G′ +K ′) +KG′K ′ +K(D2

t +HV0 + E)−1K ′.

Since for any operator L : S −→ S ′ we have 3scΨ−∞,−∞ ◦ L ◦ 3scΨ−∞,−∞ ⊂ 3scΨ−∞,−∞, this
and the composition properties for 3sc-PsiDOs show that the right hand side above lies in
3scΨ−2,0, which is what we wanted. □
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5. Functional calculus, commutators, and special symbol classes

As discussed in the introduction, our localizers near ff include functions of the limiting
static operator PV+ which act as microlocalizers to the characteristic set. Indeed, from
Section 4.3, we recall that ζ-dependence in the indicial operator can lead to failure of the
basic commutator order relations. Thus, again following Vasy, our commutant will be locally
a composition of an operator whose symbol is purely τ -dependent over C composed with a
function of the operator PV± . To prepare for this, in this section, for static V0, we wish to
consider functions of PV0 .

However, we must take special care in defining these functions, as it is not automatic that
a function of a differential operator of positive order is pseudodifferential. As a cautionary
example, consider the free Hamiltonian function p = τ 2 − |ζ|2 − m2. This is a classical
symbol, but, for ψ ∈ C∞

c (R) with ψ(0) = 1, the composition ψ(p) is not a symbol, in fact
Dk
τ (ψ(p)) grows to order k as τ goes to infinity along the characteristic set. Correspondingly,

ψ(P0) is not a pseudodifferential operator of any order.
To handle this issue we consider instead the normalization of p in which we divide essen-

tially by ⟨τ, ζ⟩2 to make an order 0 classical symbol. Consider, for E ≥ 0, the operator

Gψ,0 := ψ
(
(D2

t +Dz ·Dz +m2 + E)−1P0

)
,(5.1)

which is the Fourier multiplier for the function

(5.2) ψ

(
τ 2 − |ζ|2 −m2

τ 2 + |ζ|2 +m2 + E

)
= ψ

(
p

τ 2 + |ζ|2 +m2 + E

)
.

This Gψ,0 depends on E; the value of which is fixed such that the operator in (4.36) is

invertible. Since the ratio p/(τ 2+ |ζ|2+m2+E) is a smooth function on the whole of scT
∗
X,

its composition with ψ is as well. Thus we have

Gψ,0 ∈ scΨ0,0(X) .

5.1. Functional calculus. In this section, we construct the operator Gψ as an element in
the 3-scattering calculus. We will construct the functional calculus for general self-adjoint
3scΨ0,0-operators.
Our main result is a generalization of Proposition 10.2 [36], which relates to functions of

a many-body Hamiltonian H. For such H, one obtains that for ψ ∈ C∞
c (R),

ψ(H) ∈ 3scΨ−∞,0,

while in contrast, we see from the example of Gψ,0 that we do not expect smoothing operator
when taking functions of the Klein-Gordon operator. We will apply the following proposition
to functions of (D2

t +HV0 + E)−1PV0 in Definition 5.6 below.

Proposition 5.1. Let ψ ∈ C∞
c (R) and A ∈ 3scΨ0,0 be self-adjoint. Then

ψ(A) ∈ 3scΨ0,0

and its principal symbol satisfies j3sc(ψ(A)) = ψ(j3sc(A)), meaning

(5.3) σ3sc(ψ(A)) = ψ(σ3sc(A)), N̂mf(ψ(A)) = ψ(N̂mf(A)), N̂ff(ψ(A)) = ψ(N̂ff(A))

Remark 5.2. Since operators in 3scΨ0,0 are bounded on L2, the assumption that A is self-
adjoint is equivalent to A being symmetric.

We start by recalling the results for the scattering calculus.
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Lemma 5.3. Let A ∈ scΨ0,0(Rn) be self-adjoint. For each k ∈ N there exists a family of
order k parametrices Bk(z) ∈ scΨ0,0(Rn) for z ∈ C \ R such that

(A− z)Bk(z)− Id = R1,z ∈ scΨ−k,−k(Rn) ,

Bk(z)(A− z)− Id = R2,z ∈ scΨ−k,−k(Rn)

and the seminorms of order k of Bz, R1,z, R2,z are bounded by Ck|Im z|−c(k).
Proof. The proof is the same as [36, Lemma 10.1]. The crucial point is that the principal
symbol of A−z is jsc(A)−z and since A is self-adjoint, jsc(A) is real and therefore jsc(A)−z
is invertible for z ∈ C \ R. □

Proposition 5.4. Let A ∈ scΨ0,0(Rn) be self-adjoint and ψ ∈ C∞
c (R). Then

ψ(A) ∈ scΨ0,0(Rn)

with principal symbol

jsc(ψ(A)) = ψ(jsc(A)) .

Proof. The proof is the same as Proposition 10.2 in Vasy [36], but using the above lemma
for the parametrix. Namely, we use the Helffer–Sjöstrand formula to define

ψ(A) := − 1

2πi

∫
∂̄zψ̃(z)(A− z)−1 dz ∧ dz̄ ,

where ψ̃ is a compactly supported almost analytic extension of ψ. Then we define

Aψ,k := − 1

2πi

∫
∂̄zψ̃(z)Bk(z) dz ∧ dz̄ ,

where Bk(z) is the k-th order parametrix of A − z as in the previous lemma. We can use
asymptotic summation to obtain a limit Ãψ of Aψ,k and we conclude that

ψ(A)− Ãψ : C−∞ −→ Ċ∞

and the formula for the principal symbol follows from the explicit form of ψ(A). □

Now, we turn to the case of A ∈ 3scΨ0,0. We will an analogous argument and therefore we
start by constructing a parametrix for A− z.

Lemma 5.5. Let A ∈ 3scΨ0,0(X) be self-adjoint. For each k ∈ N there exists a family of
order k parametrices Bz ∈ 3scΨ0,0(X) for z ∈ C \ R such that

(A− z)Bk(z)− Id = R1,k(z) ∈ 3scΨ−k,−k(X) ,

Bk(z)(A− z)− Id = R2,k(z) ∈ 3scΨ−k,−k(X)

and the seminorms of order k of Bk(z), R1,k(z), R2,k(z) are bounded by Ck|Im z|−c(k).
Proof. To begin with, we claim that, for z ∈ C\R, that A−z is globally 3sc-elliptic. Indeed,

by self-adjointness, σ3sc(A) and N̂mf(A) are real valued, so σ3sc(A) − z and N̂mf(A) − z

are non-zero. Moreover, N̂ff(A)(τ) ∈ scΨ0,0(ff) is self-adjoint by Lemma 4.10, and thus

N̂ff(A− z)(τ) = N̂ff(A)(τ)− z is invertible for z ∈ C \ R.
The triple (

(σ3sc(A)− z)−1, (N̂mf(A)− z)−1, (N̂ff(A)(τ)− z)−1
)
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satisfies the conditions of Proposition 4.6 and we find a symbol b1(z) ∈ C∞(3scT
∗
X) such

that

j3sc(b1(z)) =
(
(σ3sc(A)− z)−1, (N̂mf(A)− z)−1, (N̂ff(A)(τ)− z)−1

)
.

Therefore, we can quantize b1(z) to an operator OpL(b1(z)) = B1(z) ∈ 3scΨ0,0 satisfying

(A− z)B1(z)− Id = R1,1(z) ,

B1(z)(A− z)− Id = R2,1(z)

with R1,1(z), R2,1(z) ∈ 3scΨ−1,−1(X) and by the chain rule B1(z), R1,1(z), R2,1(z) satisfy the
seminorm bounds.

Define

Bk(z) =

(
Id+

k−1∑
j=1

Rj
1,1

)
B1(z) ,

B′
k(z) = B1(z)

(
Id+

k−1∑
j=1

Rj
2,1

)
.

□

Proof of Proposition 5.1. Let ψ̃ ∈ C∞
c (C) be an almost analytic extension of ψ. By the

Helffer–Sjöstrand formula, we have that

ψ(A) = − 1

2πi

∫
C
∂̄zψ̃(z)(A− z)−1 dz ∧ dz̄ .

Denote by Bk(z) a family of order k parametrices as in the previous lemma and define the
operator Aψ,k by

Aψ,k = − 1

2πi

∫
C
∂̄zψ̃(z)Bk(z) dz ∧ dz̄ .

Since ψ̃ is compactly supported, we have that Aψ,k ∈ 3scΨ0,0(X) for all k. Denote the error
term by Fk(z) = (A− z)−1 − Bk(z). We have that |Im z|c′(k)Fk(z) is uniformly bounded on
B(Hs,ℓ

sc (X), Hs+k,ℓ+k
sc (X)) for some c′(k) by the previous lemma and Proposition 4.3. Hence,

ψ(A)− Aψ,k ∈ B(Hs,ℓ
sc (X), Hs+k,ℓ+k

sc (X)) .(5.4)

Also we have that

Aψ,k+1 − Aψ,k ∈ 3scΨ−(k+1),−(k+1)(X) .

By a standard asymptotic summation argument, we obtain Ãψ ∈ 3scΨ0,0 such that

Ãψ ∼ Aψ,1 +
∞∑
k=1

Aψ,k+1 − Aψ,k .

By (5.4), we have that

ψ(A)− Ãψ : C−∞(X) −→ Ċ∞(X)

is continuous, hence an element in scΨ−∞,−∞(X) = 3scΨ−∞,−∞(X) and therefore

ψ(A) ∈ 3scΨ0,0(X) .
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We calculate the principal symbol as

j3sc(ψ(A)) = − 1

2πi

∫
C
∂̄zψ̃(z)j3sc((A− z)−1) dz ∧ dz̄

= − 1

2πi

∫
C
∂̄zψ̃(z)(j3sc(A)− z)−1 dz ∧ dz̄

= ψ(j3sc(A)) .

Note that for the N̂ff-component, we have used Proposition 5.4. □

Now, we are able to define the operator Gψ. We fix E ≥ 0 such that D2
t + HV0 + E is

invertible (see Corollary 4.21).

Definition 5.6. For ψ ∈ C∞
c (R) and V0 ∈ S−1(Rn

z ), we set

Gψ := ψ
(
(D2

t +HV0 + E)−1PV0
)
.(5.5)

Remark 5.7. The operator Gψ depends on V0 explicitly, but we drop this from the notation
as it causes no confusion; when we work near NP, Gψ is defined with V0 = V+ and when we
work near SP, Gψ is defined with V0 = V−. We do not use Gψ away from C.

From Proposition 5.1 it follows that Gψ ∈ 3scΨ0,0(X) with indicial operator

N̂ff(Gψ)(τ) = ψ
(
(τ 2 +HV0 + E)−1(τ 2 −HV0)

)
.(5.6)

Moreover, both the fiber and mf components of the symbol of Gψ are independent of V .
Indeed, by the assumptions in Section 3.4, we have V |mf = 0, so since V ∈ 3scΨ0,0, we have

σ3sc(Gψ) = ψ

(
p

τ 2 + |ζ|2 +m2 + E

)∣∣∣∣
3scS[X;C]

= ψ

(
τ 2 − |ζ|2
τ 2 + |ζ|2

)
(5.7)

N̂mf(Gψ) = ψ

(
p

τ 2 + |ζ|2 +m2 + E

)∣∣∣∣
scT

∗
mf [X;C]

(5.8)

It will be crucial below that, although Gψ is not smoothing, its indicial operator is smooth-
ing for each τ . This makes it possible to compose Gψ with quantizations of functions of τ
alone; an arbitrary composition of even a compactly supported function of τ and a symbol
in τ, ζ is not necessarily a PsiDO. On the other hand, we see from Gψ,0 above that we expect

N̂ff(Gψ) to have symbol rapidly decaying as |ζ| → ∞, and indeed it does.

Proposition 5.8. We have that

N̂ff(Gψ) ∈ Ψ−∞,0,0
scl,sc .

Proof. We can use the functional calculus for positive self-adjoint scattering operators of
order (m, 0), [36, Proposition 10.2] applied to the function, for E ≥ 0, ψ̃(t) := ψ((τ 2 + t +

E)−1(τ 2 − t)).5 Then, for every fixed τ , N̂ff(Gψ)(τ) ∈ scΨ−∞,0(Rn). Since ψ̃ is smooth in
h = 1/τ up to h = 0, the assertion follows. □

5Strictly speaking this is not a smooth function on R, but since the spectrum of HV0
is bounded from

below by E we can change ψ̃ to a smooth function without changing ψ̃(HV0
)
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Since V0 is static, D2
t +HV0 and D2

t −HV0 commute and therefore

[Gψ, PV0 ] = 0 .(5.9)

Consequently,

[Gψ, PV ] = −[Gψ, V
′] ∈ 3scΨ1,−1 ,

which means that Gψ and PV commute to leading order.
The indicial operators of Gψ and Gψ,0, which the Fourier multiplier defined by (5.1), differ

by a lower order operator:

Lemma 5.9. We have that

(Ĝψ)ff − (Ĝψ,0)ff ∈ Ψ−∞,−1,−1
scl,sc .

Proof. We have that

(Ĝψ)ff(τ) = ψ
(
(τ 2 +HV0 + E)−1(τ 2 −HV0)

)
.

By [36, Proposition 10.3] and the fact that jsc,2,0(HV0) = jsc,2,0(H0), we have that

jsc

(
(Ĝψ)ff(τ)

)
= jsc

(
(Ĝψ,0)ff(τ)

)
The semiclassical principal symbol is given by

σscl,h=1/τ

(
(Ĝψ)ff

)
= ψ

(
(1 + h2∆)−1(1− h2∆)

)
,

which is independent of V and therefore agrees with the semiclassical principal symbol of
Gψ,0. □

Next, we prove the “shrinking window” lemma that states that if we choose ψ ∈ C∞
c

supported in a sufficiently small neighborhood of 0, then the operator norm of N̂ff(Gψ)(τ) is

arbitrary small considered when considered as a map H1,1
scl → L2. This lemma is crucial in

proving the positive commutator estimate, because we can control the error terms coming
from commutators with the potential.

Lemma 5.10. Assuming the spectrum of HV0 is purely absolutely continuous near [m2,∞),
then there is δ > 0, such that, for every ε > 0 there exists σ > 0 such that if ψ ∈ C∞

c (R) has
suppψ ⊂ (−σ, σ) and 0 ≤ ψ ≤ 1, then

∥1[m2−δ,+∞)(τ)N̂ff(Gψ)(τ) ◦ ι∥B(H1,1
scl ,L

2) < ε

where ι : H1,1
scl ↪→ L2 is the natural inclusion map.

Remark 5.11. The same statement holds true for (−∞,−m2 + δ].

Proof. First, let κ > m2 be fixed; we claim that there ψ as in the lemma such that for
τ ∈ [m2 − δ, κ], that

N̂ff(Gψ)(τ) ◦ ι : H1,1
scl −→ L2

has mapping norm less than ϵ. To see this, recall that from Proposition 4.15 we have N̂ff(Gψ)

bounded on L2 uniformly in τ . Since ι : H1,1
scl (ff) ↪→ L2(ff) is compact, it suffices to show

that for any sequence of ψn ∈ C∞
c (R) with ψn(s) = 1 for |s| ≤ 1/n and 0 ≤ ψn ≤ 1, that

N̂ff(Gψn) → 0 in the strong operator topology on L2, uniformly for τ ∈ [m2 − δ, κ]. This
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in turn follows from continuous functional calculus, specifically from (5.6), which identifies

N̂ff(Gψn) with ψn of

(τ 2 +HV0 + E)−1(τ 2 −HV0) = (1 + ρ2HV0 + ρ2E)−1(1− ρ2HV0),

which has purely absolutely continuous spectrum in a neighborhood of 0 by assumption.
On the other hand, the difference with the free operator satisfies

(5.10) (τ 2 +HV0 + E)−1(τ 2 −HV0)− (τ 2 +H0 + E)−1(τ 2 −H0) ∈ Ψ−1,−1,−1
scl,sc ,

and for any ϵ′ > 0 there is κ > 0 such that this difference has norm < ϵ′ for τ ≥ κ. Again
functional calculus gives that Gψ(τ)−Gψ0(τ) has norm less then ϵ′. But Gψ0(τ) can be seen
to satisfy the conclusion of the lemma explicitly, so the lemma follows for Gψ.

If ψ̃ satisfies ψ̃ψ = ψ̃, then also

(5.11) Gψ̃Gψ = Gψ̃,

and thus the bound holds for all such N̂ff(Gψ̃) and the lemma is proven. □

5.2. Further elliptic regularity near C. If PV u ∈ Hs,ℓ
sc , then away from C, then on

3scEll(PV ) we have the estimates in Section 4.6. At C, frequency localization becomes global
in the interaction variables, and, as discussed in above, we use Gψ to localize near the
characteristic set. Thus, for ψ ∈ C∞

c with ψ(s) = 1 for |s| < δ, δ > 0, the operator

Id−Gψ

is morally speaking a localizer to an elliptic region over NP (or SP). Indeed, for PV with

V non-static, if Q is a localizer to a neighborhood of scT
∗
NPX and Gψ is defined using V+,

then Q(Id−Gψ) is a reasonable generalization of localization to the elliptic set from the sc
setting.

Thus we expect to have an elliptic regularity statement using Id−Gψ, and such a statement
will be crucial below as all the propagation estimates are proven first using commutators
which have factors of Gψ to localize to the characteristic set. Specifically, if PV u ∈ Hs,ℓ

sc then
we should have (Id−Gψ)u ∈ Hs+2,ℓ

sc as well, at least locally near poles. That is what we
prove in this section.

We do so with a parametrix construction Note first that for static V = V0, we have

(5.12) EψPV0 = Id−Gψ

on the nose, since, if

(5.13) Eψ = Fψ ◦ (D2
t +HV0 + E)−1

we can set

Fψ = fψ((D
2
t +HV0 + E)−1PV0) with fψ(s) =

1− ψ(s)

s
.

This definition of Fψ makes sense as a bounded operator on L2 by continuous functional
calculus since (D2

t + HV0 + E)−1PV0 ∈ 3scΨ0,0 is a bounded symmetric operator. Note that
fψ is not compactly supported, so the results of Section 5 do not apply directly.
If we knew that Eψ ∈ 3scΨ−2,0 then we would immediately have estimates. That is the

purpose of the following lemma.
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Lemma 5.12. Let ψ ∈ C∞
c (R) with ψ(s) = 1 for |s| < δ. Then there is χNP ∈ C∞(X)

supported sufficiently close to NP and

Eψ ∈ 3scΨ−2,0

such that

χNP · (EψPV − (Id−Gψ)) ∈ 3scΨ−∞,−∞.

The analogous statement holds near SP, see Remark 5.7.

The lemma gives estimates:

Corollary 5.13. Let s, ℓ ∈ R, ψ ∈ C∞
c (R) with ψ(s) = 1 for |s| < δ. Let Q,G ∈ 3scΨ0,0. If

3scWF′(Q) ⊂ 3scEll(χNP) ∩ 3scEll(G), then

∥Q(Id−Gψ)u∥s+2,ℓ ≲ ∥GPV u∥s,ℓ + ∥u∥−N,−M ,
with the left hand side being finite if the right hand side is finite.

The analogous statement holds near SP, see Remark 5.7.

Proof of corollary from lemma. This follows exactly as in elliptic estimates, namely from
Lemma 5.12, we have

∥Q(Id−Gψ)u∥s+2,ℓ ≲ ∥QχNP(Id−Gψ)u∥s+2,ℓ + ∥u∥−N,−M
≲ ∥QχNPEψPV u∥s+2,ℓ + ∥u∥−N,−M
≲ ∥GPV u∥s,ℓ + ∥u∥−N,−M

where the last line uses the boundedness properties of QχNPEψ ∈ 3scΨ−2,0. □

Now we prove the lemma.

Proof. It is more convenient to work with Fψ as its symbols will be defined using functional
calculus of bounded operators. Thus we seek Fψ ∈ 3scΨ0,0 with

χNP ·
(
Fψ ◦ (D2

t +HV+ + E)−1PV − (Id−Gψ)
)
∈ 3scΨ−∞,−∞.

The lemma follows immediately by defining Eψ as in (5.13).
Now we construct Fψ. We do so iteratively at the symbolic level. We will use repeatedly

that if ψ, ψ̃ ∈ C∞
c (R),

ψψ̃ = ψ̃ =⇒ (Id−Gψ)(Id−Gψ̃) = Id−Gψ.

At each stage of the construction we shrink the region in which the symbol conditions are
satisfied. Fixing K ⊂ {s : ψ(s) = 1}, we take ψ1 ∈ C∞

c (R) with suppψ1 ⊂ K. We take
F1 ∈ 3scΨ0,0 with

E1 := F1(D
2
t +HV+ + E)−1PV − (Id−Gψ1) ∈ 3scΨ−1,−1.

The front face symbol condition is then exactly given by the function fψ1 (5.13),

(5.14) N̂ff(F1)(τ) = fψ1((τ
2 +HV+ + E)−1(τ 2 −HV+)).

(That such an indicial family exists follows from an analogous construction in the scl, sc
calculus.) The two other symbol conditions are easy to arrange as they can be solved on
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off the characteristic set of PV . For the inductive step, assume that for some ψn ∈ C∞
c (R)

which is 1 near 0, with suppψn ⊂ K, and F1, . . . , Fn with Fj ∈ 3scΨ1−j,1−j such that

En := (Id−Gψn)(
n∑
j=1

Fj)(D
2
t +HV+ + E)−1(D2

t −HV+)− (Id−Gψn) ∈ Ψ−n,−n.

Then we solve for Fn+1 such that

Fn+1(D
2
t +HV+ + E)−1(D2

t −HV+) + (Id−Gψn)Kn ∈ 3scΨ−n−1,−n−1.

which is to say N̂ff,−n(Fn+1)(τ) = Fψ((τ
2 + HV+ + E)−1(−τ 2 + HV+))N̂ff,−n(En). Then for

any ψn+1 ∈ C∞
c (R) with ψn+1ψn = ψn,

(Id−Gψn+1)(
n+1∑
j=1

Fj)(D
2
t +HV+ + E)−1(D2

t −HV+)− (Id−Gψn+1) ∈ Ψ−n−1,−n−1.

Thus by induction there are F1, . . . , with Fj ∈ 3scΨ1−j,1−j such that

(Id−Gψ)(
n∑
j=1

Fj)(D
2
t +HV+ + E)−1(D2

t −HV+)− (Id−Gψ) ∈ Ψ−n,−n,

for any n, and taking the Borel sum gives

Fψ = (Id−Gψ)(
∞∑
j=1

Fj)

It remains only to know that fψ((τ
2 + HV+ + E)−1(τ 2 − HV+)) ∈ Ψ0,0,0

scl,sc, but this follows
from an identical parametrix argument. □

5.3. Localization near the characteristic set. We now construct the operators which
we use as microlocalizers and commutators near C. There will be of the form

OpL(q)Gψ ,(5.15)

where q ∈ C∞(scT ∗X). We are mainly interested in the case that

q|scT ∗
NPX

(τ, ζ) = q(0, 0, τ, ζ) = f(τ)(5.16)

for some f ∈ C∞(W⊥), for this mimics the centrality condition in (4.17), with the crucial
difference that in general these q do not lie in 3scSm,l(X;C). Indeed, even for f(τ) ∈ C∞

c (Rτ ),
any function q satisfying (5.16) is not a symbol since it does not exhibit additional vanishing
in ζ under application of ∂τ .
We will see that, despite the fact that such q are not 3sc-symbols, that the operator in

(5.15) is a 3sc-operator provided

(5.17) q ∈ C∞([scT
∗
X; fibeq])

This is the same blow up that appears in the proof of Lemma 4.14. Rather than describe
this blow up in detail, we simply say that q satisfies (5.17) if: (1) it is a classical symbol in
ζ of order zero and smooth in τ in regions |τ | < C, (2) in regions with |ζ| < C, ±τ > C > 0
it is smooth in ρ = ±1/τ down to ρ = 0, and (3) in regions where µ = ζ/ρ is bounded, it is
a classical symbol in µ, smooth in ρ down to ρ = 0.

While, (5.17) will ensure that (5.15) lies in 3scΨ0,0, the condition (5.16) will ensure that
commutators with PV have the correct order (i.e. lose one order compared with composition.)
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This is established in the following proposition, in which we use ρ = 1/τ to modify the
differential order so that the centrality condition is preserved; this leads to the appearance
of factors of ⟨τ, ζ⟩/τ in the local components of the symbol. Also (see Remark 2.4) we use
powers of x to rescale the symbol. Here we also define all symbols using a fiber defining
function ρfib which is equal to ρ near the characteristic set.

This proof follows from the same arguments as in Vasy [36, Proposition 13.1]. The main
difference is that since Gψ is of differential order 0 and vanishes to infinite order at fibeq (by
Proposition 5.8), the product is a 3sc-operator if q is smooth on [scT ∗X; fibeq].

Proposition 5.14. Let q ∈ C∞([scT ∗X; fibeq]) satisfying (5.16), and assume that there is
c > 0 such that supp q ∩ [−c, c] = ∅. Then for s, ℓ ∈ R,

OpL(x
−ℓρ−sq)Gψ ∈ 3scΨs,ℓ(X) .

The components of the principal symbol are

N̂ff(OpL(x
−ℓρ−sq)Gψ)(τ) = ρ−sf(τ) · N̂ff(Gψ)(τ) ,

and

σ3sc(OpL(x
−ℓρ−sq)Gψ) = q|scS∗X · σ3sc(Gψ) ,

N̂mf(OpL(x
−ℓρ−sq)Gψ) = q|scT ∗

∂XX
· N̂mf(Gψ) ,

where we have implicitly used that ρ∞ = x, ρfib = ρ near NP on supp(σ3sc(Gψ)) and on

supp(N̂mf(Gψ)).

We note that the commutator with PV decreases the order as expected:

Proposition 5.15. The commutator of PV and QGψ satisfies [PV , QGψ] ∈ 3scΨs+1,ℓ−1(X)
and

τ−sN̂ff,ℓ−1([PV , QGψ]) = −f(τ)[∂xV ′|x=0, (Ĝψ)ff ]

− [HV0 ,OpL(∂xq(0, 0, τ, ζ) + z∂yq(0, 0, τ, ζ))](Ĝψ)ff

− 2iℓτf(τ)(Ĝψ)ff .

Proof. Without loss of generality, we may assume that s = 0. By Proposition 5.14, we have
that the front face symbols of QGψ and PV commute. To calculate the indicial operator of
the commutator, we use Proposition 4.13 with A = PV and B = QGψ. We have that

Âff = τ 2 −HV0 ,

Dτ Âff = −2iτ ,

Â′
ff = −∂xV ′|x=0 ,

B̂ff = f(τ)(Ĝψ)ff ,

Dτ B̂ff = −if ′(τ)(Ĝψ)ff + f(τ)Dτ (Ĝψ)ff ,

B̂′
ff = OpL(∂xq(0, 0, τ, ζ) + z∂yq(0, 0, τ, ζ))(Ĝψ)ff + f(τ)(Ĝψ)

′
ff .
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Using that (Ĝψ)ff and HV0 commutate we calculate

[Â′
ff −Dτ Âff , B̂ff ] = −f(τ)[∂xV ′|x=0, (Ĝψ)ff ] ,

[Âff , B̂
′
ff −Dτ B̂ff ] = −[HV0 , B̂

′
ff ] ,

= −[HV0 ,OpL(∂xq(0, 0, τ, ζ) + z∂yq(0, 0, τ, ζ))](Ĝψ)ff − f(τ)[HV0 , (Ĝψ)
′
ff ] .

The second summand vanishes because (HV0)
′ = 0 implies that (Ĝψ)

′
ff = 0. This proves the

claim.
□

The positive commutator argument will evaluate the commutator of the unperturbed
operator in the scattering calculus and therefore we need to compare the commutator in the
perturbed and unperturbed setting (cf. [36, Corollary 13.4]):

Corollary 5.16. Let

R(τ) := τ−s
(
N̂ff([PV , QGψ])(τ)− N̂ff([P0, QGψ,0])(τ)

)
.

Then,

R ∈ Ψ−∞,−1,0
scl,sc

and

∥R(τ)∥B(L2,H1,1
scl )

≲ sup{|Dα
x,y,τD

β
ζ q(0, 0, τ, ζ)| : |α| ≤ 1, |β| ≤ cn} ,

where c > 0 is a universal constant and the implied constant is independent of τ and q.

Proof. For brevity, we set qx(τ, ζ) := ∂xq(0, 0, τ, ζ) and qy(τ, ζ) = ∂yq(0, 0, τ, ζ). From the
previous proposition, we calculate that

R(τ) = −f(τ)[∂xV ′|x=0, (Ĝψ)ff ] + [V0,OpL(qx + zqy)](Ĝψ)ff

− i (−2OpL(ζqy) + 2ℓτf(τ))
(
(Ĝψ)ff − (Ĝψ,0)ff

)
.

We have that (Ĝψ)ff ∈ Ψ−∞,0,0
scl,sc and therefore the first term is in Ψ−∞,−1,0

scl,sc and bounded

independently of q and τ . The commutator [V0,OpL(qx + zqy)] is in Ψ0,−1,0
scl,sc and we can

estimate its operator norm as a map H1,0
sc → H1,1

sc by

C sup{|Dα
x,yD

β
ζ q(0, 0, τ, ζ)| : |α| = 1, |β| ≤ cn} ,

and composition with (Ĝψ)ff is a bounded map L2 → H1,1
sc with the same norm.

From Lemma 5.9, we have that (Ĝψ)ff − (Ĝψ,0)ff ∈ Ψ−∞,−1,−1
scl,sc and

OpL(ζqy)− ℓτf(τ) ∈ Ψ0,0,1
scl,sc

and the operator norm is bounded by

C sup{|Dα
yD

β
ζ q(0, 0, τ, ζ)| : |α| ≤ 1, |β| ≤ cn} ,

which completes the proof. □
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5.4. G̊arding type theorems. In this section, we state and prove a sharp G̊arding type
theorem for 3sc-operators. In contrast to Vasy [36], we use a localization operator Gψ that
is in 3scΨ0,0 and therefore we have to take the fiber principal symbol in account. We will
consider the general situation of a localizer ψ(A), where A ∈ 3scΨ0,0 is self-adjoint. In the case
of the Klein-Gordon equation, we take A = (D2

t +HV0 +E
2)−1PV0 in which case ψ(A) = Gψ.

Our proof again follows [36], in particular using a method for construction of square roots
of operators, which we recall now. In [36] this appears as Lemma C.1, but as we do not use
it directly here, we merely state the result and recall the method of proof.

Assume that we are given self-adjoint operators A,Q ∈ 3scΨ0,0(X), c > 0 and ψ ∈ C∞
c (R)

real-valued with ψ(x) = 1 for |x| < δ for some δ > 0. Then, if we have a bound from below
of the form If

ψ(A)Qψ(A) ≥ cψ(A)2 ,

then for any c′ ∈ (0, c) and ϕ ∈ C∞
c (R) with ϕψ = ϕ, we can find a square root B ∈ 3scΨ0,0(X)

in the sense that

ϕ(A)(Q− c′)ϕ(A) = ϕ(A)B∗Bϕ(A) .(5.18)

We recall the proof almost verbatim from [36], the main difference being that our ψ(A) is
in 3scΨ0,0 as opposed to 3scΨ−∞,0. Define

P = ψ(A)Qψ(A) + c(Id−ψ(A)2) ∈ 3scΨ0,0(X) .

Since P ≥ c we have that P − c′ ≥ c− c′ > 0. Then we can apply Proposition 5.1 to take the
square root of P − c′, i.e. we take f(P − c′) with a function f ∈ C∞

c (R) such that f(t) =
√
t

on the spectrum of P −c′. The function exists because σ(P −c′) ⊂ [c−c′, C] for some C > 0.
We then have that

P̃ := (P − c′)1/2 ∈ 3scΨ0,0(X) .

We choose a ψ1 ∈ C∞
c (R) with ψ1 ≡ 1 on suppϕ and ψ1 ≡ 0 on supp(1− ψ). We calculate

that

ψ1(A)P̃
2ψ1(A) = ψ1(A)(P − c′)ψ1(A)

= ψ1(A)(A− c′)ψ1(A) .

Let B = P̃ψ1(A), then multiplying the previous equation yields the equation (5.18).
We now have the non-sharp G̊arding inequality which operates under the assumption that

the principal symbol is strictly positive.

Proposition 5.17. Let A,Q,C ∈ 3scΨ0,0(X) be self-adjoint and assume N̂ff(A) ∈ Ψ−∞,0,0
scl,sc,±1/τ .

Suppose that the principal symbol of C satisfies

σ3sc(C) = cfib · ψ0(σ3sc(A))
2 ,

N̂mf(C) = cmf · ψ0(N̂mf(A))
2 ,

N̂ff(C) = cff · ψ0(N̂ff(A))
2 ,

where ψ0 ∈ C∞
c (R), cfib ∈ C∞(scS∗

X\CX), cmf ∈ C∞(scT ∗
∂X\CX) and cff ∈ C∞(W⊥). We

assume that

(1) c0 ≤ c• ≤ c′0 for • ∈ {fib,mf,ff} and some c′0, c0 > 0,
(2) ψ0(x) = 1 for |x| < δ0,
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(3) there exists ψ ∈ C∞
c (R) with ψ(x) = 1 for |x| ≤ δ1 and suppψ ∩ supp(1 − ψ0) = ∅

such that

(5.19)

ψ(σ3sc(A))σ3sc(Q)ψ(σ3sc(A)) ≥ cfibψ(σ3sc(A))
2 ,

ψ(N̂mf(A))N̂mf(Q)ψ(N̂mf(A)) ≥ cmfψ(N̂mf(A))
2 ,

ψ(N̂ff(A))N̂ff(Q)ψ(N̂ff(A)) ≥ cffψ(N̂ff(A))
2 .

Then for any ε ∈ (0, 1) and ϕ ∈ C∞
c (R) with suppϕ ∩ supp(1 − ψ) = ∅, there exists

R ∈ 3scΨ−1,−1(X) such that

ϕ(A)Qϕ(A) ≥ (1− ε)ϕ(A)Cϕ(A) +R .

Proof. The idea is to construct a square-root of Q− (1− ε)C modulo lower order terms. We
follow the methodology described before the proof to take square roots first of each of the
symbols individually. That is, we write, for • ∈ {mf,ff},

P•(τ) = N̂•(ψ(A)Qψ(A)) + c•(Id−N̂•(ψ(A))
2)

and

Pfib(τ) = σ3sc(ψ(A)Qψ(A)) + cfib(Id−σ3sc(ψ(A))2).
Then, with f ∈ C∞

c (R) with f(x) =
√
x for ϵ ≤ x ≤ c for c sufficiently large, we let

B• = f(P• − (1− ϵ)c•)ψ1(A), • ∈ {fib,mf,ff} .
The symbols Bfib, Bff , Bmf satisfy the conditions of Proposition 4.6; the matching con-

ditions follow easily, and the fact that Bff lies Ψ0,0,0
scl,sc,±1/τ and satisfies the appropriate

smoothness condition follows from the fact that Pff is semiclassically scattering elliptic and
N̂ff(ψ1(A)) ∈ Ψ−∞,0,0

scl,sc,±1/τ .

Therefore we find a B ∈ 3scΨ0,0(X) with σ3sc(B) = Bfib, N̂ff(B) = Bff and N̂mf(B) = Bmf .
Hence there is a R ∈ 3scΨ−1,−1(X) such that

ϕ(A) (Q− (1− ε)C)ϕ(A) = ϕ(A)B∗Bϕ(A) +R .

Since ϕ(A)B∗Bϕ(A) ≥ 0 this proves the proposition. □

Lastly, we have the sharp G̊arding inequality that only assumes that the principal symbol
is non-negative.

Proposition 5.18. Let A,Q,C ∈ 3scΨ0,0(X) be self-adjoint and assume N̂ff(A) ∈ Ψ−∞,0,0
scl,sc,±1/τ .

Suppose that the principal symbol of C satisfies

σ3sc(C) = cfib · ψ0(σ3sc(A))
2 ,

N̂mf(C) = cmf · ψ0(N̂mf(A))
2 ,

N̂ff(C) = cff · ψ0(N̂ff(A))
2 ,

where ψ0 ∈ C∞
c (R), cfib ∈ C∞(scS∗

X\CX), cmf ∈ C∞(scT ∗
∂X\CX) and cff ∈ C∞(W⊥).

Assume that

(1) c• ≥ 0 for • ∈ {fib,mf,ff},
(2) either cff vanishes in a neighborhood of ±∞ or cff(±∞) > 0,
(3) if cfib(ξ) = 0 for ξ ∈ scS∗

X\CX, then σ3sc(Q)(ξ) = 0 and the analogous condition for
cmf and cff ,
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(4)
√
c• ∈ C∞ and vanishes to infinite order at points ξ where c•(ξ) = 0,

(5) the symbols

c−1
ff N̂ff(Q), c−1

mf N̂mf(Q), c−1
fibσ3sc(Q)

are bounded together with all their derivatives on W⊥, 3scT
∗
mf [X;C], 3scS∗[X;C], re-

spectively,
(6) ψ0(x) = 1 for |x| < δ0,
(7) there exists ψ ∈ C∞

c (R) with ψ(x) = 1 for |x| ≤ δ1 and suppψ ∩ supp(1 − ψ0) = ∅
such that

(5.20)

ψ(σ3sc(A))σ3sc(Q)ψ(σ3sc(A)) ≥ cfibψ(σ3sc(A))
2 ,

ψ(N̂mf(A))N̂mf(Q)ψ(N̂mf(A)) ≥ cmfψ(N̂mf(A))
2 ,

ψ(N̂ff(A))N̂ff(Q)ψ(N̂ff(A)) ≥ cffψ(N̂ff(A))
2 .

Then for any ε ∈ (0, 1) and ϕ ∈ C∞
c (R) with suppϕ ∩ supp(1 − ψ) = ∅, there exists

R ∈ 3scΨ−1,−1(X) such that

ϕ(A)Qϕ(A) ≥ (1− ε)ϕ(A)Cϕ(A) +R .

Proof. In the case that cff(τ) = 0 for τ ≫ 0, the argument is identical to that in [36,
Proposition C.3]. In the case cff(+∞) ̸= 0, we put the previous lemma microlocally near

+∞ ∈ W⊥ and then the same argument again from [36]. □

6. Propagation estimates over C

We now prove propagation of singularities estimates over C. As elsewhere, since the
arguments are identical at the two points in C, we focus on NP. Our commutant construction
follows [36, Chap. 14] closely, and as such we attempt to be faithful to the notation there for
ease of comparison, although we make some changes in order to decrease the overall amount
of notation, which is substantial.

Note that τ is preserved along the flow at NP; as described above, the global nature of the
operator above ff leads to propagation phenomenon analogous to diffraction, namely that
singularities entering at a given τ level in the characteristic set at NP may emerge, still at
level τ , in any direction. Thus, if we wish to control a distribution u at a specific τ0 in W⊥

over NP, we must assume a priori control of u along all bicharacteristics which enter NP at
that τ0 level.

To formulate this rigorously, recall γ3sc : Ċ3sc[X;C] −→ P(∂3scT
∗
[X;C]) defined in (4.31),

which in particular associates to each τ0 ∈ W⊥ the full {τ = τ0} slice above ff. We also

define the projection onto τ levels as follows. Recalling that Char(P0) ⊂ scT
∗
X, i.e. that we

include fiber infinity in the characteristic set of P0, we define the map that records both the
spacetime location and the τ level of a point in the characteristic set of P0, (possibly ±∞),

(6.1)
πX,τ : Char(P0) −→ X × R ,

(x, y, τ, ζ) 7→ (x, y, τ) .

This map is well-defined up to the fiber boundary since Char(P0) has empty intersection
with the fiber equator.

Proposition 6.1. Let V ∈ ρmf
3scΨ1,0 and V0 ∈ S−1(Rn

z ) such that V − V0 ∈ 3scΨ1,−1 and

V − V ∗ ∈ 3scΨ0,−2 .
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Let B0 ∈ 3scΨs,ℓ, E0 ∈ 3scΨs,ℓ, G ∈ 3scΨs−1,ℓ+1 for some s, ℓ ∈ R. Assume that

(1) WF′
ff(E0) = ∅,

(2) 3scWF′(B0) ∪ 3scEll(E0) ⊂ 3scEll(G)
(3) For all α ∈ γ3sc(

3scEll(G)), we have that scHp(α) ̸= 0.
(4) For all α ∈ Char(P0) that are incoming to 3scWF′(B0), in the sense that

πX,τ (α) ∈ πX,τ (γ3sc(
3scWF′(B0)) ∩ Char(P0)) ,

there exists sα ∈ (−ε, 0) such that

exp(sα
scHp)(α) ∈ 3scEll(E0)

and for all s ∈ [sα, 0],

exp(s scHp)(α) ∈ γ3sc(
3scEll(G)) .

For each u ∈ H−N,−M
sc with E0u ∈ L2, GPV u ∈ L2 it follows that B0u ∈ L2 and

∥B0u∥ ≲M,N ∥E0u∥+ ∥GPV u∥+ ∥u∥−N,−M .

The proof of this proposition comes at the end of this section.

Remark 6.2. In words, the proposition states that, to obtain estimates at a given τ level
over NP, we must control the backward flow out of the entire sphere |ζ|2 = τ 2 + m2 in a
neighborhood of NP. The elliptic set of E0 must control this set in the sense that it must
contain a transversal of the sphere earlier along the flow. In particular, the elliptic set of G
over ff must contain the whole of WF′

ff(B0).

Remark 6.3. The same proposition holds if the wavefront set of B0 is controlled by the for
backward flow of the elliptic set of E0, in which case sα ∈ (0, ϵ).

We have two types of estimates in this section, one microlocalized near τ ∈ W⊥ with
m < |τ | < ∞, for which the arguments follow most closely those in [36], and the other

microlocalized at τ = ±∞ ∈ W⊥, which requires more substantial modifications.
The proofs in these two settings are similar, not only in their overall structure, but in the

specific functions which define the commutators and the proofs of the various properties of
the attendant operators. We thus focus on the case ±∞ ∈ W⊥, and in fact to τ = +∞, and
the argument for finite τ (as for τ = −∞) is a straightforward adaptation.

Both cases involve the consideration of the set Σ (not the characteristic set!) which is the

closure in scT
∗
X of the set ζ · y = 0 in a region |y| < c of NP. In the coordinates (x, y, ρ, µ)

above in equation (2.25), Σ is

(6.2) Σ = {(x, y, ρ, µ) : µ · y = 0, µ ̸= 0, |y| < c},
and the value of c is irrelevant below as we will localize our estimates in small neighborhoods
of NP. In these coordinates it is clear that Σ is smooth up to fiber infinity. (This same Σ is
used in Vasy, but there only its finite ξ, ζ points are relevant; we use it out to infinity.)
We also assume for simplicity for most of this section that

V − V ∗ = 0.

Indeed, without this assumption the commutators which arise below involve P(V+V ∗)/2 and
the V − V ∗ appears as an error, but it is clearer to make this realness assumption and use
commutators with PV , and then discuss the generalization of V later under the assumption
in (6.29).
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We first work with the free Klein-Gordon operator P0 and then relate its commutators
to those of PV . The commutators of P0 can be analyzed directly using its Hamilton vector
field, and we need in particular to analyze this vector field’s behavior at Σ, both near and
away from fiber infinity over NP.

Lemma 6.4. The set Σ is a smooth submanifold of scT
∗
X. Moreover, the Hamilton vector

field scHp is transversal to Σ ∩ scT
∗
NPX in a neighborhood of Char(P0).

Proof. At y = 0, away from fiber infinity, Hp = −2x(ζ · ∂y), so the rescaled Hamilton vector
field scHp is

scHp = −µ · ∂y at NP (2.24). Since the condition defining Σ is µ · y = 0, thus

(6.3) scHp(µ · η) = −|µ|2

on NP and is thus non-zero near the characteristic set near NP, which is what we wanted. □

Remark 6.5. Consequently, there exists a neighborhood U ′ ⊂ scT
∗
X of Char(P0) ∩ scT

∗
NPX

on which we can solve the Cauchy problem

Hpf = 0 , f |Σ = f0 .

The proposition will follow from estimates localized near points in W⊥, and the positive
commutator argument we use to establish such estimates is accomplished using commuta-
tors localized near NP and near τ . Formally speaking, we will use a positive commutator
argument analogous to that used in the scattering setting discussed in Section 2. We use
the commutators constructed for this purpose in Section 5.3 of the form

(6.4) i[PV , GψQ
∗QGψ]

where ψ ∈ C∞
c and Q is constructed analogously to the corresponding commutant in [36]. In

particular, we will take q ∈ C∞([scT
∗
X; fibeq]) satisfying the centrality condition q|NP = f(ρ)

where f ∈ C∞(W⊥). Concretely,

(6.5) Q = OpL(x
−(ℓ+1/2)ρ−(s−1/2)q) , q = χ∂(x)q̃ ,

for a cutoff function χ∂ supported near 0 and q̃ a function on scT ∗
∂XX, and q̃ essentially given

by [36, Eq. 14.20], with modification that we clarify below. Furthermore, q̃ itself is defined
first near the characteristic set (in a neighborhood of the sort depicted by Figure 5), this
is the function q̃0 in [36, Eq. 14.11], and then on a complement of a neighborhood of the
characteristic set using a partition of unity. We describe this in detail below.

First, we make the following remarks about this commutator and its important features,
both of which appear in the proof in Vasy [36].

• As discussed in Section 4.3, QGψ ∈ 3scΨs−1/2,ℓ+1/2 satisfies

[PV , GψQ
∗QGψ] ∈ 3scΨ2s,2ℓ,

and, by choosing the support of f = q|NP localized around a given τ0 ∈ W⊥, we will
obtain estimates localized near that τ0. (Note we want more than simply localization
as we need a positive commutator.)

• We do not use (or more accurately we do not attempt to define) the Hamilton vector
field of PV directly, and thus we do not directly compute the principal symbol of
i[PV , GψQ

∗QGψ] in terms of some action on q. Instead, we compare i[PV , GψQ
∗QGψ]

to an operator whose principal symbol we know explicitly. (See just below these
remarks for an elaboration on this comparison.)
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τ = τ0

W⊥

Figure 5. Localization near the characteristic set and at τ0 ∈ W⊥.

It is instructive to consider first the case V = 0 and the commutator [P0, Gψ,0Q
∗QGψ,0],

where Gψ,0 is the corresponding function of the free Klein-Gordon operator P0 in equation

(5.1). In this case compute N̂ff(i[P0, Gψ,0Q
∗QGψ,0]) in terms of

f(ρ) := q̃|NP,

and scHpq̃. Recalling, from (2.23)-(2.24), that away from the characteristic set we use the
rescaling scHp = (ρ/x)Hp, we have

(6.6) N̂ff,2ℓ(i[P0, Gψ,0Q
∗QGψ,0])(τ) = ρ−2s(Ĝψ,0)ff

(
2 (scHpq̃) f(τ) + 2(2ℓ+ 1)f(τ)2

)
(Ĝψ,0)ff .

(This is an easy consequence of N̂ff,ℓ(A)(τ) = N̂sc(A)(0, 0, τ,Dz) for A ∈ scΨm,ℓ.) Thus,
we seek a q̃ which gives positivity when differentiated by the Hamilton vector field, and we
proceed to the construction of q̃ now.
Let χ0 ∈ C∞(R) given by

χ0(t) =

{
e−1/t t ≥ 0 ,

0 t ≤ 0 .
(6.7)

A key feature of χ0 is that

χ0(t) = t2χ′
0(t),

Choose χ1 ∈ C∞(R, [0, 1]) such that

χ1(t) = 0 for t ≤ 0 ,

χ1(t) = 1 for t ≥ 1 ,

χ′
1(t) ≥ 0 .

Vasy’s construction of q̃0 uses functions N and ω, and we retain this notation with appro-
priate modifications of their definitions. We choose a neighborhood

U ′ ⊂ Char(P0) ∩ scT
∗
NPX

as in Remark 6.5 and we define a function N ∈ C∞(U ′), which will act as our flow parameter
from Σ, by

scHpN = 1 , N |Σ = 0 ,

and by the transversality of scHp to Σ in (6.3), we see that away from µ = 0 and near Σ, i.e.
on sets of the form |µ| ≥ c > 0, |µ · y| ≤ c, |y| < c, we have

c1(µ · y) ≤ N ≤ c2(µ · y) .
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−2δ −δ 0 2δ − ω/ε

3WF′(B0)
3Ell(E)

Figure 6. The function q̃0 in the direction of the flow measured by N . The
north pole is at N = 0.

for some c1 < c2. Thus N has the dual features that it is commensurable with µ · y (near
Σ and away from µ = 0) and parallel along the flow. This N is identical to that in [36], we
merely use that it is smooth up to the fiber boundary ρ = 0 near the characteristic set.

In proving estimates at +∞ ∈ W⊥, we define an ω which differs from the one in Vasy,
namely we let ω ∈ C∞(U ′) be given by the solution of

(6.8) scHpω = 0 , ω|Σ = |y|2 + ρ2.

This ω is used to localize near ω = 0, which here is the set ρ = 0, y = 0, i.e. fiber infinity
over NP. Note that at finite τ0 levels one can use, exactly as in Vasy, ω|Σ = |y|2 + |τ − τ0|2.
Thus exactly as in [36, Eq. 14.10-14.11], for ϵ, δ, β > 0, we set

ϕ = N + ω/ϵ,

and define the function

q̃0(x, y, ρ, θ) := χ0(β
−1(2− ϕ/δ))χ1(N/δ + 2) ,

depicted in Figure 6. In particular the support of q̃0 is contained in ϕ ≤ 2δ and N ≥ −2δ.
Thus, we have the bounds

|N | ≤ 2δ , |ω| ≤ 4εδ , |ϕ| ≤ 6δ(6.9)

on the support of q̃0. In particular, the choice of δ determines how far from NP we have to
control u with E and ϵ determines the interval around +∞ ∈ W⊥ we want to control.

We now wish to extend q̃0 to a function q̃ defined on the whole of scT
∗
X, i.e. also away

from the characteristic set; since q̃0 is defined on the characteristic set we can do this easily
enough with a bump function that is 1 near Char(P0) and in fact we will choose such a

function that is smooth on scT
∗
X.
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Such cutoffs to the characteristic set were discussed in Section 5, and we recall that
smooth functions of p/(τ 2 + |ζ|2 +1) are smooth on the whole of scT

∗
X. Thus we define, for

χ ∈ C∞
c (R) with χ identically 1 near zero,

(6.10) χChar = χ

(
τ 2 − |ζ|2 −m2

τ 2 + |ζ|2 + 1

)
= χ

(
p

τ 2 + |ζ|2 + 1

)
.

We choose χ such that suppχChar ⊂ U ′ in order that χCharq̃0 is well-defined. The choice of a
function χ as opposed to the ψ used in Section 5 is deliberate, as we hope to avoid confusion
in the use of χChar as a cutoff to the characteristic set and ψ which is used to take functions
of an operator. For the same reason the denominator has 1 instead of m2+E, as the symbol
of χChar is irrelevant; it is just a cutoff to the characteristic set. We note that χChar differs
from Vasy’s cutoff ρ(g) [36, Eq. 14.20]; in the setting of that paper, the characteristic set is
compactly contained in the interior of scT ∗X so the behavior near fiber infinity is irrelevant.
Define q̃ by

(6.11) q̃ = χCharq̃0 + (1− χChar)χ0(β
−1(2− ω0/(ϵ̃δ))),

Note that q̃ is constant in ζ on NP. We have that

N |NP = 0 , ω|NP = ρ2 ,

therefore we may define f ∈ C∞(W⊥) by

f(ρ) = q̃|NP = χ0(ϱ(ρ)) ,(6.12)

where

ϱ(ρ) := β−1

(
2− ρ2

ϵδ

)
and thus q̃ satisfies the centrality condition (4.17).
We now compute the Hamilton vector field applied to q̃0:
scHp(q̃0) = −β−1δ−1χ′

0(β
−1(2− ϕ/δ))χ1(N/δ + 2) + δ−1χ0(β

−1(2− ϕ/δ))χ′
1(N/δ + 2) .

We have used here that scHpN = 1 and scHpω = 0. Note that χ1(N/δ + 2) is constantly
1 in a neighborhood of ff. Thus we now draw the important conclusion that over NP this
expression simplifies to

(6.13) f ♭(ρ) := −scHp(q̃0)|NP = β−1δ−1χ′
0(ϱ) ∈ C∞(W⊥),

the minus sign being included as f ♭ ≥ 0 will be used as an upper bound below. We will use
below that we can bound f in terms of f ♭,

(6.14) f(ρ) ≤ 4δ

β
f ♭(ρ).

We may define g0 and ẽ0 by

g20 := 2β−1δ−1
(
χ0(β

−1(2− ϕ/δ))χ′
0(β

−1(2− ϕ/δ))
)
χ1(N/δ + 2)2,

and

(6.15) ẽ20 := 2δ−1χ2
0χ1χ

′
1.

Setting

r :=
Mδ

2β
(2− ϕ/δ)2 ,
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we have the following.

Lemma 6.6. For any ε, δ,M > 0 there exist β > 0 large such that r ∈ [0, 1) and

scHp(q̃
2
0) +Mq̃20 = −(1− r)g20 + ẽ20(6.16)

on U ′.

Proof. We start by observing that from the bound of N and ω in (6.9), we have that

|2− ϕ/δ| ≤ 8.

Therefore, if we choose β > 0 such that

β > 82δM ,

then r < 1.
To establish (6.16), we first observe that

scHp(q̃
2
0) = −g20 + ẽ20 .

Moreover, we calculate

Mq̃20 =Mχ2
0

(
β−1(2− ϕ/δ)

)
χ2
1

=M
(2− ϕ/δ)2

β2
(χ0χ

′
0)
(
β−1(2− ϕ/δ)

)
χ2
1

= rg20 ,

where we used the explicit relationship between χ0(t) = t2χ′
0(t). □

Taking β > 0 as in the previous lemma, we define

b̃0 := (1− r)1/2g0 .

Noting that b̃0 is defined only on U ′, we can extend to a function b as with q̃ and q̃0 above,
namely by writing

b := χ∂(x)b̃

with

b̃ := χCharb̃0 + (1− χChar)

(
(1−Mδϱ)

2

βδ
χ0(ϱ)χ

′
0(ϱ)

)1/2

.

Here the parenthetical term on the right is equal to b̃0 over NP, and thus b̃ gives a globally
defined function which restricts to

(6.17) b̃|NP(ρ) =
(
2(1−Mδϱ)f(ρ)f ♭(ρ)

)1/2
.

Similarly, we set

ẽ = χCharẽ0, e = χ∂(x)ẽ0,

We note that

(supp e) ∩ scT
∗
NPX = ∅,

and thus e is in fact a standard scattering symbol. From (6.15), we see that

(6.18) supp e ⊂ {N + ω/ϵ ≤ 2δ} ∩ {−2δ ≤ N ≤ −δ},
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and in addition is supported near the characteristic set thanks to the χChar. Thus e is
supported near the bicharacteristic rays flowing into ρ = 0 over NP as N increases, i.e.
along the direction of the Hamiltonian flow.

To utilize q, b and e in an expression related to commutator i[PV , GψQ
∗QGψ], we will

choose a ψ ∈ C∞
c (R) with sufficiently small support that, away from the front face, only

the function q̃0 appears in the principal symbol of QGψ. Indeed, recall that for arbitrary
ψ ∈ C∞

c (R), by Proposition 5.14 we have

σ3sc,s−1,ℓ+1(QGψ) = (q|scS∗X) · σ3sc(Gψ)

N̂mf,s−1,ℓ+1(QGψ) = (q|scT ∗
∂XX

) · N̂mf(Gψ)

N̂ff,ℓ+1(QGψ) = ρ−(s−1/2)f · N̂ff(Gψ).

Thus, if ψ is chosen with sufficiently small support such that

χChar · ψ
(
(τ 2 + |ζ|2 +m2 + E)−1p

)
= ψ

(
(τ 2 + |ζ|2 +m2 + E)−1p

)
,

We have that(
qψ
(
(τ 2 + |ζ|2 +m2 + E)−1p

)∣∣
∂X

= q̃0 ψ
(
(τ 2 + |ζ|2 +m2 + E)−1p

)∣∣
∂X
,

so over the boundary away from ff only q̃0 appears in the symbol of QGψ.
We thus obtain our desired positivity at the level of the principal symbol in the first two

components, i.e. at fiber infinity and over mf. Indeed, directly from Lemma 6.6, we have

σ3sc,2s,2ℓ(i[PV , GψQ
∗QGψ]) =

(
−b̃20 + ẽ20 + (2(2ℓ+ 1)−M)q̃20

)
σ3sc(Gψ)

2(6.19)

N̂mf,2s,2ℓ(i[PV , GψQ
∗QGψ]) =

(
−b̃20 + ẽ20 + (2(2ℓ+ 1)−M)q̃20

)
N̂mf(Gψ)

2.(6.20)

In order to use the sharp G̊arding type theorem in Proposition 5.18, we must have a similar
inequality over ff. This can be done by again possibly reducing the size of the support of
ψ, and using operator norm bounds to compare the indicial operator of [PV , GψQ

∗QGψ] to
that of [P0, Gψ,0Q

∗QGψ,0]. We note that we have a formula for the free indicial operator in
terms of the functions defined above, namely, from (6.6),
(6.21)

N̂ff,2ℓ (i[P0, Gψ,0Q
∗QGψ,0]) =

(
−2(1−Mδϱ)ff ♭ + (2(2ℓ+ 1)−M)f 2

)
ρ−2sN̂ff(Gψ,0)

2 ,

Thus, for P0, the indicial operator has similar structure to the other symbol components,
and f can be bounded in terms of f ♭. However, we cannot easily calculate the indicial
operator of the perturbed commutator. Following Vasy, we will use a “window shrinking”
argument to prove that the difference of the free and perturbed commutators are small
provided that the cutoff function ψ in the localizer Gψ is supported sufficiently close to 0.

Lemma 6.7. For every ε′ > 0 there exists ψ ∈ C∞
c with ψ = 1 on (−δ, δ) where δ = δ(ε′)

such that

ρ2sN̂ff,2ℓ(i[PV , GψQ
∗QGψ])− (2(2ℓ+ 1)−M) f 2 · N̂ff(Gψ)

2

≤ −(2− ε′)(1−Mδϱ)f ♭f · N̂ff(Gψ)
2 .

Proof. Let φ ∈ C∞
c (R) with φ(s) = 1 for |s| ≤ 1 to be chosen later. We consider the

operator defined on ff which is the difference of the commutator and the local part of the
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free commutator in (6.21) but with the Gφ localizer:

Rφ := ρ2sN̂ff,2ℓ(i[PV , GφQ
∗QGφ])−

(
−2(1−Mδϱ)ff ♭ + (2(2ℓ+ 1)−M) f 2

)
N̂ff(Gφ)

2.

Note that, if ψ ∈ C∞
c (R) has ψϕ = ψ then

Rψ = GψRφGψ.

We have that

Rφ = ρ2s
(
N̂ff,2ℓ{i[PV , GφQ

∗QGφ]− i[P0, Gφ,0Q
∗QGφ,0]}

)
+ ρ2sN̂ff,2ℓ (i[P0, Gφ,0Q

∗QGφ,0])−
(
−2(1−Mδϱ)ff ♭ + (2(2ℓ+ 1)−M) f 2

)
N̂ff(Gφ,0)

2

+
(
−2(1−Mδϱ)ff ♭ + (2(2ℓ+ 1)−M) f 2

) (
N̂ff(Gφ,0)

2 − N̂ff(Gφ)
2
)
.

We claim that

Rφ ∈ Ψ−∞,−1,0
scl,sc

and that there is a C > 0 independent of ρ = 1/τ such that

∥Rφ(ρ)∥B(L2,H1,1
scl )

≤ Cf ♭(ρ)f(ρ) .(6.22)

To see this, note that in the expression for Rφ(ρ), line two vanishes by (6.21). For the
third line in that expression, one obtains (6.22) from Lemma 5.9 (and Proposition 5.8) and
estimating f by f ♭ as in (6.14). Finally, for the first line, we use Corollary 5.16 (and Lemma
5.9 and Proposition 5.8 again).

Taking ε = ε′/C and ψ as in Lemma 5.10, we obtain

(6.23)

ρ2sN̂ff,2s,2ℓ(i[PV , GψQ
∗QGψ])− (2(2ℓ+ 1)−M)f 2N̂ff(Gψ)

2

= 2(1−Mδϱ)f ♭f · N̂ff(Gψ)
2 +GψRφGψ

≤ 2(1−Mδϱ)f ♭f · N̂ff(Gψ)
2 − ε′ · f ♭f .

This is nearly what the lemma claims, only missing the N̂ff(Gψ)
2 on the ϵ′ term, but is

obtained by multiplying both sides by yet another N̂ff(Gψ̃) for yet another ψ̃ with ψ̃ψ =

ψ̃. □

Now we can fix ε′ ∈ (0, 1/4) and ψ ∈ C∞
c as in the lemma above. Choose ϕ ∈ C∞

c with
ϕ(s) = 1 for |s| ≤ δ(ε′)/2 and suppϕ ⊂ (−δ(ε′), δ(ε′)). We define

B = OpL(x
−ℓρ−sb)Gϕ ,(6.24)

E = OpL(x
−ℓρ−se)Gϕ ,(6.25)

Q0 = OpL(x
−ℓρ−sq)Gϕ .(6.26)

Lemma 6.8. There exists F ∈ 3scΨ2s−1,2ℓ−1 and ε ∈ (0, 1) such that 3scWF′(F ) ⊂ 3scWF′(B)
and

i[PV , GϕQ
∗QGϕ] + (M − 2(2ℓ+ 1))Q∗

0Q0 ≤ −(1− ε)B∗B + E∗E + F .

Proof. We will prove the lemma by using Proposition 5.18. By the definition of ϕ, there
exists ψ1 ∈ C∞

c such that

suppϕ ∩ supp(1− ψ1) = ∅ ,

suppψ1 ∩ supp(1− ψ) = ∅ .
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We set

A := i[PV , GψQ
∗QGψ] + (M − 2(2ℓ+ 1))Gψ OpL(x

−ℓρ−sq)∗OpL(x
−ℓρ−sq)Gψ

−Gψ OpL(x
−ℓρ−se)∗OpL(x

−ℓρ−se)Gψ ,

C := −Gψ OpL(x
−ℓρ−sb)∗OpL(x

−ℓρ−sb)Gψ .

We have that

GϕAGϕ = i[PV , GϕQ
∗QGϕ] + (M − 2(2ℓ+ 1))Q∗

0Q0 − E∗E ,

GϕCGϕ = −B∗B .

Hence, to prove the claim, we can apply Proposition 5.18 with ψ1. It remains to verify the
inequality of the principal symbols. For the main face and fiber symbol, this is (6.19) and

(6.20). For N̂ff , we observe that

ρ2sN̂ff,2ℓ(A) = ρ2sN̂ff,2ℓ(i[PV , GψQ
∗QGψ]) + (M − 2(2ℓ+ 1))f 2N̂ff(Gψ)

2 ,

ρ2sN̂ff,2ℓ(C) = −2(1−Mδϱ)f(ρ)f ♭(ρ)N̂ff(Gψ)
2

and by Lemma 6.7, we have that

N̂ff,2ℓ(A) ≤ (1− ε′/2)N̂ff,2ℓ(C) .

□

Remark 6.9. As opposed to the case of scattering operators in Section 2, we cannot use
a simplified version of the G̊arding inequality, because we truly only have an inequality of
principal symbols.

For r ∈ (0, 1) and δ1, δ2 ∈ (0,∞), we define

Jr,δ1,δ2 := (1 + r/x)−δ2(1 + r/ρ)−δ1 .

We have that

OpL(Jr,δ1,δ2) → Id as r → 0

strongly in B(Hs′,ℓ′
sc ) for every s′ > 0, ℓ′ > 0 (cf. Vasy [38, p. 408]).

Using (2.23), we calculate

HpJr,δ1,δ2 = −2τxδ2
r

x+ r
Jr,δ1,δ2 .

Hence, we can choose M̃ > 0 independent of r, such that for all τ, x, we have

M̃Jr,δ1,δ2 ≥
1

τx
HpJr,δ1,δ2 .(6.27)

Taking M > M̃ + 2(2ℓ+ 1) and using Lemma 6.6, we have that

Hp(x
−(2ℓ+1)ρ−(2s−1)J2

r,δ1,δ2
q2) ≤ x−2ℓρ−2sJ2

r,δ1,δ2
(−b2 + e2 +O(ρ · x))(6.28)

on U ′.

Qr := OpL(x
−(ℓ+1/2)ρ−(s−1/2)Jr,δ1,δ2q)Gϕ ,

Br := OpL(x
−ℓρ−sJr,δ1,δ2b)Gϕ ,

Er := OpL(x
−ℓρ−sJr,δ1,δ2e)Gϕ .
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We have that

Qr ∈ 3scΨs−1/2−δ1,ℓ+1/2−δ2 and Br, Er ∈ 3scΨs−δ1,ℓ−δ2 .

Since

Jr,δ1,δ2 = ρδ1xδ2(ρ+ r)−δ1(x+ r)−δ2 ,

we have that

N̂ff,ℓ+1/2−δ2(Qr) = ρδ1N̂ff,ℓ+1/2(Q) ,

N̂mf(Qr) = ρδ1xδ2N̂mf(Q) ,

σ3sc(Qr) = ρδ1xδ2σ3sc(Q)

and similarly for Br and Er.

Lemma 6.10. There exists F ′
r ∈ 3scΨ2s−1−2δ1,2ℓ−1−2δ2 such that 3scWF′(F ′

r) ⊂ 3scWF′(B) and

i[PV , Q
∗
rQr] ≤ −(1− ε)B∗

rBr + E∗
rEr + F ′

r ,

and F ′
r ∈ B(H2s−1,2ℓ−1

sc ) is uniformly bounded as r → 0.

Proof. The argument is essentially the same as the proof of Lemma 6.8, but using (6.28) to
obtain the symbol inequalities. □

We now relax the condition on V − V ∗. For this we write

Ṽ := (V + V ∗)/2 , V ′′ := (V − V ∗)/(2i) ,

and we have that

PV = PṼ − iV ′′ .

We have that both PṼ and V ′′ are formally self-adjoint. The assumption of Proposition 6.1
implies that

V ′′ ∈ 3scΨ0,−2 .(6.29)

We first prove a variant of the propagation estimate with the specific B and E.

Lemma 6.11. Let u ∈ H−N,−M
sc , B,E as in (6.24)-(6.25), and G ∈ 3scΨs−1,ℓ+1 with

3scWF′(B) ∪ 3scEll(E) ⊂ 3scEll(G).

If Eu,GPV u ∈ L2, then Bu ∈ L2 and we have the estimate

∥Bu∥ ≲N,M ∥Eu∥+ ∥GPV u∥+ ∥u∥−N,−M .

Remark 6.12. Note that here we make no explicit assumption about the relationship between
the Hamiltonian flow and the elliptic set of G as in Proposition 6.1. This is because the
operators here are given explicitly in (6.24)-(6.25). Here 3scWF′(B) by construction is an

open neighborhood of +∞ ∈ W⊥ ⊂ Ċ3sc[X;C].

Proof. We take δ1 = s+N and δ2 = ℓ+M . Then for r ∈ (0, 1), we have that

Qr ∈ 3scΨ−N−1/2,−M+1/2 .

Therefore, Qru ∈ H
−1/2,1/2
sc and QrPV u ∈ H

1/2,−1/2
sc and the pairing of Qru and QrPV u is

well-defined. We have that

2 Im⟨QrPV u,Qru⟩ = ⟨i[PṼ , Q∗
rQr]u, u⟩ − ⟨(Q∗

rQrV
′′ + V ′′Q∗

rQr)u, u⟩ .(6.30)
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Since V ′′ ∈ 3scΨ0,−2, we have that

F ′′
r := F ′

r − (Q∗
rQrV

′′ + V ′′Q∗
rQr) ∈ 3scΨ−2N−1,−2M−1

and using Lemma 6.10 with PṼ , we obtain that

∥Bru∥2 ≲ ∥Eru∥2 − 2 Im⟨QrPV u,Qru⟩+ ⟨F ′′
r u, u⟩ .

We have

|Im⟨QrPV u,Qru⟩| ≥ − 1

4µ
∥scΛ−1/2,1/2QrPV u∥2 − µ∥scΛ1/2,−1/2Qru∥2 .

Since scΛ1/2,−1/2Qr is a 0th order multiple of Br and scΛ−1/2,1/2 is a 0th order multiple of
Q1,r, we can absorb µ∥scΛ1/2,−1/2Qru∥2 into 1

2
∥Bru∥2 if we choose µ ∈ (0, 1) small enough

modulo lower order terms. Then, we conclude that

∥Bru∥2 ≲ ∥scΛ−1/2,1/2QrPV u∥2 + ∥Eru∥2 + |⟨F ′′
r u, u⟩| .

The right-hand side is bounded as r → 0 and since Br → B as r → 0, we conclude that
Bu ∈ L2 and

∥Bu∥2 ≲ ∥scΛ−1/2,1/2QPV u∥2 + ∥Eu∥2 + |⟨F ′′u, u⟩| .
Set

B1 = OpL(x
−ℓ+1/2ρ−s+1/2b)Gϕ .

By elliptic regularity, we have that

⟨F ′′u, u⟩ ≲ ∥B1u∥2 + ∥u∥2−N,−M ,

∥scΛ−1/2,1/2QPV u∥ ≲ ∥GPV u∥+ ∥u∥−N,−M .

Hence, we have proved the estimate

∥Bu∥ ≲N,M ∥B1u∥+ ∥Eu∥+ ∥GPV u∥+ ∥u∥−N,−M .

To remove the B1 term we inductively apply the previous estimate to the error term
starting with the estimate

∥B1u∥ ≲N,M ∥B2u∥+ ∥Eu∥+ ∥GPV u∥+ ∥u∥−N,−M ,

where

B2 = OpL(x
−ℓ+1ρ−s+1b)Gϕ .

After a finite amount of steps we have that s− k/2 < −N and ℓ− k/2 < −M and therefore
we have that ∥Bku∥ ≲ ∥u∥−N,−M . □

Now we can prove Proposition 6.1.

Proof of Proposition 6.1. Let B0, E0 and G be as in the proposition. First, we claim that
there are B,E as in Lemma 6.11 such that 3scWF′(E) is controlled by 3scEll(E0). Indeed,
this is accomplished by taking δ > 0 small in the definition of q (and hence of B,E) and
thus 3scWF′(E) is small neighborhood of the backward flow out of +∞, see (6.18) and below.
Thus, by standard scattering propagation in Section 2, we have that

∥Eu∥ ≲N,M ∥E0u∥+ ∥GPV u∥+ ∥u∥−N,−M
and thus by Lemma 6.11, we control B in terms of E0

∥Bu∥ ≲N,M ∥E0u∥+ ∥GPV u∥+ ∥u∥−N,−M .
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On the other hand, by the elliptic regularity of Corollary 5.13, for Q̃ ∈ scΨs,ℓ with +∞ ∈
Ellff(Q̃) with

3scWF′(Q̃) sufficiently small, we have

∥Q̃(Id−Gψ)u∥ ≲ ∥GPV u∥+ ∥u∥−N,−M ,
where we willingly relinquish the additional differential order of regularity that comes in
Corollary 5.13. In fact, we choose Q̃ so that N̂ff,ℓ(Q̃)(+∞) = f(0) with f given by (6.12)
and set

B′ = Q̃(Id−Gψ) +B .

We then have:

(1) B′u ∈ L2 and satisfies the same estimate as Bu,
(2) +∞ ∈ Ellff(B

′).

The second claim follows directly from (4.23) and

N̂ff,ℓ(B
′)(+∞) = f(0)(1− N̂ff(Gψ)(+∞)) + N̂ff,ℓ(B)(+∞)

= f(0)(1− N̂ff(Gψ)(+∞)) + f(0)N̂ff(Gψ)(+∞)

= f(0) > 0 .

The first claim follows from putting the bounds for B and Q̃(Id−Gψ) together. More
precisely,

(6.31) ∥B′u∥ ≲N,M ∥E0u∥+ ∥GPV u∥+ ∥u∥−N,−M .

Finally, we control B0u in terms of B′u and E0u as follows. Let Q ∈ scΨ0,0 be such that
3scWF′(Q) ⊂ 3scEll(B′) ,

WF′
ff(Id−Q) = ∅.

Then

(6.32) ∥QB0u∥ ≲N,M ∥B′u∥+ ∥u∥−N,−M .

Moreover, 3scWF′(Id−Q)B0 is controlled by 3scEll(B′) ∪ 3scEll(E0) through flow lines which
avoid NP, and thus by the scattering propagation estimates

(6.33) ∥(Id−Q)B0u∥ ≲N,M ∥E0u∥+ ∥B′u∥+ ∥GPV u∥+ ∥u∥−N,−M .

Consequently, we obtain

∥B0u∥ ≤ ∥QB0u∥+ ∥(Id−Q)B0u∥
≲N,M ∥E0u∥+ ∥B′u∥+ ∥GPV u∥+ ∥u∥−N,−M
≲N,M ∥E0u∥+ ∥GPV u∥+ ∥u∥−N,−M .

where in the last line we used (6.31). This proves the proposition. □

7. Radial point estimates over C

In the previous section, we had to exclude the points τ0 ∈ {±m} ⊂ W⊥ because the

Hamilton vector field vanishes there. Indeed, by (2.27), we have that scT
∗
NPX ∩ Rf = {x =

0, y = 0, ζ = 0, τ = ±m}. In Section 2.7, we proved localized radial point estimates away
from the poles. Hence it remains to prove radial point estimates near C and τ0 ∈ {±m}.
These estimates take a similar form as the scattering radial point estimates. As usual, we
work only near NP.
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The propositions in this section are conceptually a combination of the radial points esti-
mates reviewed in Section 2.7 and the commutator construction with operators of the form
QGψ used in Section 6. As in the scattering case, the form of the symbol q used in the radial
points commutator is simpler than that of the standard propagation, in that it is essentially
a bump function localizing to the radial set multiplied by a weight; for us it is a bump
function localizing to τ = ±m ∈ W⊥, see (7.1). Since the commutators QGψ are localized in
bounded τ , they are smoothing, and thus the only relevant weight is the spacetime weight.
As in Section 6, the theorem is microlocal only in the 3sc-sense near ±m ∈ W⊥, meaning

only in the inverse image of ±m under the π⊥ map in (4.28). For example, the above

threshold estimates imply that if a distribution u lies in the above threshold space H
s,−1/2+ϵ
sc

near (π⊥)−1(m), and PV u lies in H
s−1,1/2+ϵ′
sc there, then u lies in H

s,−1/2+ϵ′
sc in a smaller

neighborhood of (π⊥)−1(m).
As in the previous section we assume that V ∈ ρmf

3scΨ1,0 and V0 ∈ S−1(Rn
z ) satisfy

V − V0 ∈ 3scΨ1,−1 and

(V − V ∗)/(2i) ∈ 3scΨ0,−2 .

Proposition 7.1 (Above threshold radial point estimate). Let ℓ, ℓ′ ∈ R with ℓ ≥ ℓ′ > −1/2
and

τ0 = ±m ∈ W⊥.

Let B1 ∈ 3scΨs,ℓ′, G ∈ 3scΨs−1,ℓ+1 and assume that 3scEll(B1) ⊂ 3scWF′(G). Then, there
exists B0 ∈ 3scΨs,ℓ with

τ0 ∈ Ellff(B0)

and 3scWF′(B0) ⊂ 3scEll(B1) such that for any M,N ∈ R, we have

∥B0u∥ ≲ ∥GPV u∥+ ∥B1u∥+ ∥u∥−N,−M ,

provided the right hand side is finite.

Proposition 7.2 (Below threshold radial point estimate). Let ℓ ∈ R with ℓ < −1/2, and let
B0, E ∈ 3scΨs,ℓ, G ∈ 3scΨs−1,ℓ+1, such that

(1) 3scWF′
ff(E) = ∅,

(2) 3scWF′(B0) ∪ 3scEll(E) ⊂ 3scEll(G),

(3) γ3sc(
3scEll(G)) ∩ (Rf

− ∪Rp
+) = ∅,

(4) for every α ∈ Char(P0) such that

πX,τ (α) ∈ πX,τ

(
γ3sc

(
3scWF′(B0)

)
∩ Char(P0) \ (Rf

+ ∪Rp
−)
)
,

there exists sα ∈ (−ε, 0) such that

exp(sα
scHp)(α) ∈ 3scEll(E) ,

and for all s ∈ [sα, 0],

exp(sα
scHp)(α) ∈ π−1

3sc(
3scEll(G)) .

For any M,N ∈ R, the estimate

∥B0u∥ ≲ ∥GPV u∥+ ∥Eu∥+ ∥u∥−N,−M
holds.

The same statement holds if Rf
+∪Rp

− is replaced by Rf
−∪Rp

+ with forward control instead
of backward control.
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Again for the construction of the commutator, we start by assuming that V −V ∗ = 0 and
then later we can run the argument under the assumption (6.29).

We proceed to the commutator construction. We will work near τ0 = m, as the result
near τ0 = −m follows via identical arguments. To avoid cumbersome distinction between
the above and below threshold cases, we introduce a constant κ ∈ {±1} in the arguments
below. The case that κ = 1 is used in the above threshold estimate and the case that κ = −1
is used in the below threshold estimate.

Let δ1, δ2 > 0 to be chosen later. Let χ1, χ2 ∈ C∞(R) be non-negative cutoff functions
with suppχi ⊂ [−δi, δi] and χi(s) = 1 for s ∈ [−δi/2, δi/2] , i = 1, 2. Below, δ1 will be taken
sufficiently small with respect to δ2 so that an error term arising on mf has a definite sign.
Consider the function

(7.1) q(x, y, τ) = χ2(|y|2)χ1(x)χ1(τ −m),

which is identically 1 on a small neighborhood of the set τ = m over C.
As opposed to the previous section, we directly calculate the commutator with the regu-

larized symbols. Since q is compactly supported in τ , we only need a regularization for the
decay order. Hence, for r ∈ (0, 1), we set

Jr,δ := (1 + r/x)−δ .(7.2)

We have that Jr,δ = xδ(x+ r)−δ and therefore

N̂ff,−δ(Jr,δ) = r−δ .

As before, by the form of the Hamilton vector field (2.23), we have

HpJr,δ = −2τxδ
r

x+ r
Jr,δ

Setting

q♭r(x, y, τ, ζ) = χ1(x)χ1(τ −m)

((
2ℓ+ 1− 2δ

r

x+ r

)
τχ2(|y|2)− 4(ζ + τy) · y χ′

2(|y|2)
)

we have that

Hp(x
−(ℓ+1/2)Jr,δq) = x−(ℓ−1/2)Jr,δ ·

(
q♭r +O(x)

)
.

Since x ≥ 0, we have that

2ℓ+ 1− 2δ
r

x+ r
≥ 2(ℓ+ 1/2− δ)

and thus for δ > ℓ− 1/2, we have 2ℓ+ 1− 2r/(x+ r) > 0.
Let ℓ ∈ R, κ(ℓ+ 1/2) > 0, and define

br(x, y, τ) =

√
2τκ

(
2ℓ+ 1− 2δ

r

x+ r

)
χ2(|y|2)χ1(x)χ1(τ −m)(7.3)

=

√
2τκ

(
2ℓ+ 1− 2δ

r

x+ r

)
· q(x, y, τ) ,

e(x, y, τ, ζ) =
√

8(ζ + τy) · yχ2(|y|2)(−χ′
2(|y|2))χ1(x)χ1(τ −m)

and we can write

2q♭rq = κb2r + e2



80 D. BASKIN, M. DOLL, AND J. GELL-REDMAN

and consequently,

Hp(x
−(2ℓ+1)J2

r,δq
2) = x−2ℓJ2

r,δ

(
κb2r + e2 +O(x)

)
.(7.4)

We then define

f(τ) := q|C = χ1(τ −m) ,

f ♭(τ) := q♭r|C = (2ℓ+ 1)τχ1(τ −m)

and observe that

2ff ♭ = κ br|2C .
We define the microlocal commutant as

Q̃r := OpL(x
−(ℓ+1/2)Jr,δq) .

Lemma 7.3. For every ε′ > 0 there exist δ = δ(ε′) and ψ ∈ C∞
c with ψ = 1 on (−δ, δ) such

that

κN̂ff,2ℓ(i[PV , GψQ̃
∗
rQ̃rGψ]) ≥ (2− ε′)r−2δff ♭N̂ff(Gψ)

2 .

Proof. The proof is almost identical to the proof of Lemma 6.7. We write

R1 := κN̂ff,2ℓ(i[PV , GφQ̃
∗
rQ̃rGφ])− 2r−2δff ♭N̂ff(Gφ)

2

= N̂ff,2ℓ(i[PV , GφQ̃
∗
rQ̃rGφ]− i[P0, Gφ,0Q̃

∗
rQ̃rGφ,0])

+ N̂ff,2ℓ

(
i[P0, Gφ,0Q̃

∗
rQ̃rGφ,0]

)
− 2r−2δff ♭N̂ff(Gφ,0)

2

+ 2r−2δff ♭
(
N̂ff(Gφ,0)

2 − N̂ff(Gφ)
2
)
.

We use Corollary 5.16, equation (7.4), and Lemma 5.9 to obtain that R1 ∈ Ψ−∞,−1,0
scl,sc and

∥R1(τ)∥B(L2,H1,1
scl

≤ Cf(τ)f ♭(τ) .

Since we assumed that HV0 has purely absolutely continuous spectrum near [m2,∞), we can
apply Lemma 5.10 to obtain the claimed inequality. □

Again we choose ε′ ∈ (0, 1/4) and ψ in the lemma above and we choose ϕ ∈ C∞
c with

ϕ(s) = 1 for |s| ≤ δ(ε′)/2 and suppϕ ⊂ (−δ(ε′), δ(ε′)). Define
Qr := OpL(x

−(ℓ+1/2)Jr,δq)Gϕ ,

Br := OpL(x
−ℓJr,δbr)Gϕ ,

Er := OpL(x
−ℓJr,δe)Gϕ .

We have that Qr ∈ 3scΨ−∞,ℓ+1/2−δ(X) and Br, Er ∈ 3scΨ−∞,ℓ−δ(X). The indicial operators
are given by

N̂ff,ℓ+1/2−δ(Qr)(τ) = r−δχ1(τ −m)(̂Gϕ)ff(τ) ,

N̂ff,ℓ−δ(Br)(τ) = 2r−δ
√
τκ(ℓ+ 1/2)χ1(τ −m)(̂Gϕ)ff(τ) ,

N̂ff,ℓ−δ(Er)(τ) ≡ 0 .

(7.5)
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Lemma 7.4. There exists Fr ∈ 3scΨ−∞,2(ℓ−δ)−1 such that WF′
3sc(Fr) ⊂ WF′

3sc(B) and

(1− ε)B∗
rBr ≤ κ(i[PV , Q

∗
rQr]− E∗

rEr) + Fr

and

Fr ∈ B(Hs,2ℓ−1
sc , L2)

is uniformly bounded as r → 0.

Proof. Using the sharp G̊arding type theorem, Proposition 5.18, we only have to prove that

N̂mf,2ℓ(B
∗
rBr) = κN̂mf,2ℓ(i[PV , Q

∗
rQr]− E∗

rEr) ,

(1− ε′)N̂ff,2ℓ(B
∗
rBr) ≤ κN̂ff,2ℓ(i[PV , Q

∗
rQr]− E∗

rEr) .

The first claim follows from (7.4) and the fact that

N̂mf,2ℓ(i[PV , Q
∗
rQr]) = Hp(x

−(2ℓ+1)q2)N̂mf(G
2
ϕ) .

For the second equality, we observe that

N̂ff,2ℓ(E
∗
rEr) = 0

together with Lemma 7.3 implies the claimed inequality. □

We define

Q := OpL(x
−(ℓ+1/2)q)Gϕ ,

B := OpL(x
−ℓb0)Gϕ ,

E := OpL(x
−ℓe)Gϕ .

With these operators, we can now state the above and below threshold radial point estimates.
We now only assume that

(V − V ∗)/(2i) ∈ 3scΨ0,−2 .

Lemma 7.5 (Above threshold estimate). Let ℓ, ℓ′ ∈ R with ℓ ≥ ℓ′ > −1/2 and let u ∈ Hs,ℓ′
sc

and assume that x−1/2Bu, x−1/2QPV u ∈ L2. Then Bu ∈ L2 and we have the estimate

∥Bu∥ ≲ ∥x−1/2Bu∥+ ∥x−1/2QPV u∥+ ∥u∥−N,−M .(7.6)

Lemma 7.6 (Below threshold estimate). Let ℓ ∈ R with ℓ < −1/2 and let u ∈ H−N,−M
sc and

assume that x−1/2Bu, x−1/2QPV u,Eu ∈ L2. Then Bu ∈ L2 and we have the estimate

∥Bu∥ ≲ ∥x−1/2Bu∥+ ∥x−1/2QPV u∥+ ∥Eu∥+ ∥u∥−N,−M .

Proof of Lemma 7.5. We take δ = ℓ − ℓ′, so that Qr ∈ 3scΨ−∞,ℓ′+1/2. As in (6.30), we have
that

2 Im⟨QrPV u,Qru⟩ = ⟨i[PṼ , Q∗
rQr]u, u⟩ − ⟨(Q∗

rQrV
′′ + V ′′Q∗

rQr)u, u⟩ ,

where Ṽ := (V + V ∗)/2 and V ′′ := (V − V ∗)/(2i) and PV = PṼ − iV ′′. Since V ′′ ∈ 3scΨ0,−2,
we have that

F ′
r := Fr +Q∗

rQrV
′′ + V ′′Q∗

rQr ∈ 3scΨ−∞,2ℓ′−1
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and

∥Bru∥2 ≲ ⟨i[PṼ , Q∗
rQr]u, u⟩ − ∥Eru∥2 + ⟨Fru, u⟩

= 2 Im⟨QrPV u,Qru⟩ − ∥Eru∥2 + ⟨F ′
ru, u⟩

≤ µ∥x1/2Qru∥2 +
1

4µ
∥x−1/2ϕPV u∥2 + |⟨F ′

ru, u⟩|

Taking µ ∈ (0, 1) small enough we can absorb x1/2Qru into Bru since x1/2Qr is a 0th order
multiple of Br. Hence, we have that

∥Bru∥2 ≲ ∥x−1/2QrPV u∥2 + |⟨F ′
ru, u⟩| .

By assumption the right-hand side is bounded uniformly as r → 0, and since Br → B, we
have that Bu ∈ L2. The claimed estimate follows from a standard elliptic estimate for F ′

r:

|⟨F ′
ru, u⟩| ≲ ∥x−1/2Bru∥2 + ∥u∥−N,−M .

□

Proof of Lemma 7.6. We use the same argument, but start with u ∈ H−N,−M
sc and use δ =

ℓ−M . Moreover, since κ = −1 we have to keep the term ∥Eru∥2. □

Proof of Proposition 7.1. We proceed in two steps, first we show that we can estimate the
right hand side of (7.6) by the right hand side claimed in Proposition 7.1 and then we
construct B0 from B such that B0 is elliptic at τ = m.
Step 1: We have to show that if B1u ∈ L2, then

∥Bu∥ ≲ ∥GPV u∥+ ∥u∥−N,−M .

By assumption G is elliptic on 3scWF′(Q) and G, x−1/2Q are both of spatial order ℓ + 1.
Therefore

∥x−1/2QPV u∥ ≲ ∥GPV u∥+ ∥u∥−N,−M .

By the previous lemma and a standard induction argument to replace x−1B by B1, we obtain

∥Bu∥ ≲ ∥GPV u∥+ ∥B1u∥+ ∥u∥−N,−M .

Step 2: Now we have to show that we can estimate

∥B0u∥ ≲ ∥GPV u∥+ ∥B1u∥+ ∥u∥−N,−M
for some B0 ∈ 3scΨs,ℓ with m ∈ Ellff(B0) and 3scWF′(B0) ⊂ 3scEll(G). If B was elliptic at

m ∈ W⊥, then we could just take B0 = B.
Let Q′ = OpL(q

′) ∈ scΨ0,0 with

N̂ff(Q
′)(m) = 2

√
m(ℓ+ 1/2) · Id

and 3scWF′(Q′) sufficiently small and set

B′ := B + x−ℓQ′(Id−Gψ) .

Then

N̂ff,ℓ(B
′) = 2

√
τ(ℓ+ 1/2)χ(τ −m)N̂ff(Gψ) + 2

√
m(ℓ+ 1/2)N̂ff(Id−Gψ)
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and

N̂ff,ℓ(B
′)(m) = 2

√
m(ℓ+ 1/2) · Id .

Therefore, m ∈ Ellff(B
′). By Corollary 5.13, we have that

∥B′u∥ ≤ ∥Bu∥+ ∥x−ℓQ′(Id−Gψ)∥
≲ ∥GPV u∥+ ∥B1u∥+ ∥u∥−N,−M .

□

Proof of Proposition 7.2. The argument is basically the same as in the above threshold case,
but we can absorb ∥B1u∥ into ∥Eu∥. More precisely, we can estimate

∥B1u∥ ≲ ∥GPV u∥+ ∥Eu∥+ ∥u∥−N,−M
by propagation of singularities. □

8. Construction of the causal propagators

Using the estimates above, we can now complete the construction of the causal propaga-
tors. The argument is similar in structure to the construction done for scattering perturba-
tions V in Section 2.8 and Section 2.9. We will now state the precise assumptions for a 3sc
perturbation V .
Let V ∈ ρmf

3scΨ1,0 such that

(1) there exist V± ∈ S−1(Rn
z ) and C > 0 such that for all t > C and |z/t| < C,

V (t, z)− V+(z) ∈ 3scΨ1,−1 ,

and for all t < −C and |z/t| < C,

V (t, z)− V−(z) ∈ 3scΨ1,−1 .

(2) The imaginary part (V − V ∗)/(2i) satisfies

(V − V ∗)/(2i) ∈ 3scΨ0,−2 .

(3) The Hamiltonians HV± = ∆+m2 + V± have purely absolutely continuous spectrum
near [m2,∞) and finitely many eigenvalues in (−∞,m2).

If the Hamiltonians HV± have bound states we need more decay for V −V±. In that case we
additionally have to assume positivity of the Hamiltonians to conclude invertibility of PV .
We construct the causal propagators, working in X spaces based on exactly the same

scattering Sobolev spaces used in the scattering setting in Section 2.8. Recall the spacetime-
dependent forward and backward weight functions ℓ± from Definition 2.14. In addition to
being monotone along the flow, we must have that the weight functions ℓ± are constant
in an open neighborhood of scT

∗
CX. Indeed, all of our estimates over the poles are proven

with constant weights near C, and in fact we do not even define the indicial operator in the
presence of variable weights. Note that we can take ℓ± ∈ C∞(X) i.e. a function on spacetime,
which is constant in neighborhoods of both past and future causal infinity, as discussed in
the proof of Proposition 2.5. Note that this cannot be achieved for the Feynman weights,
since they have to satisfy ℓ > −1/2 at NP ∩ {τ = −m} and ℓ < −1/2 on NP ∩ {τ = m}.
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We fix s ∈ R and admissible forward and backward weights ℓ+, ℓ−. Define

X s,ℓ± := {u ∈ Hs,ℓ±
sc : PV u ∈ Hs−1,ℓ±+1

sc } ,
Ys,ℓ± := Hs,ℓ±

sc .

Remark 8.1. Note that these X s,ℓ± spaces depend on V , but we do not include this in the
notation. However, if W ∈ 3scΨ1,−1, then

W : Hs,ℓ±
sc −→ Hs−1,ℓ±+1

sc ,

hence X s,ℓ± only depends on V±.

The first theorem is for the case that HV± have no eigenvalues.

Theorem 8.2. Let V ∈ ρmf
3scΨ1,0 satisfying (1), (2), and (3) above. If the Hamiltonians

HV± have no discrete spectrum, then the mapping

PV : X s,ℓ+ −→ Ys−1,ℓ++1

is invertible and its inverse is the forward propagator in the sense of (1.2). The same is true
for the backward propagator with ℓ+ replaced by ℓ−.

In the case that the Hamiltonians HV± have discrete spectrum we have to strengthen
the assumptions on the decay of V − V±: To simplify our exposition, we make the further
assumption that, as t → ±∞, for V± the asymptotic values of V in Section 3.4, we have an
additional order of spacetime decay,

Theorem 8.3. Let V ∈ ρmf
3scΨ1,0 satisfying (1), (2), and (3). Assume that as t→ ±∞ we

have

V − V±(z) ∈ 3scΨ1,−2(Rn+1).(8.1)

Then the mapping

(8.2) PV : X s,ℓ+ −→ Ys−1,ℓ++1

is Fredholm.
Moreover,

(1) if HV− is positive, then (8.2) is injective and
(2) if HV+ is positive, then (8.2) is surjective.

If HV± are both positive, then PV is invertible and its inverse is the forward propagator in
the sense of (1.2). The same is true for the backward propagator with ℓ+ replaced by ℓ−.

Finally, if V is static we can drop the assumption of no decaying modes.

Theorem 8.4. Let V = V (z) ∈ S−2(Rn
z ) with (2) and (3), then

PV : X s,ℓ+ −→ Ys−1,ℓ++1

is invertible.

Remark 8.5. The conclusions of the three theorems remain true if D2
t − ∆z is replaced by

□g for a non-trapping, asymptotically Minkowski perturbation g.
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8.1. Assuming no bound states. We start by proving Theorem 8.2. The assumption that
there are no eigenvalues in (−∞,m2) implies that

(−m,m) ⊂ Ellff(PV ).(8.3)

Indeed, recalling (P̂V )ff(τ) = τ 2 − (∆z +m2 + V+(z)), we see that for |τ | < m, (P̂V )ff(τ) is
scattering elliptic. Thus (see Section 4.6), for |τ | < m, we have that τ ∈ Ellff(PV ) if and only
if τ 2 − (∆z +m2 + V+) is in fact invertible. Thus, ellipticity of PV at τ ∈ W⊥ ∩ (−m,m) is
equivalent to the non-existence of a bound state of ∆ + V+ with energy E = τ 2 −m2. Thus
in this section we will have (8.3) at both NP and SP.

For u ∈ S(Rn+1), define

(8.4) Eu(t) :=
1

2

∫
Rn

|∂tu|2 + |∇zu|2 + (V u)u+m2u2dz ≥ c(t)

∫
Rn

|u(t, z)|2dz,

where c(t) is the minimum of σ(∆ +m2 + V (t, z)). If there are no bound states of V−, then
σ(∆ + m2 + V−) ≥ c0 > 0, so by the Kato–Rellich theorem, there is t0 such that for any
t < t0, Eu(t) ≥ (c − δ)∥u∥2, which is to say in particular that Eu(t) ≥ 0 for t sufficiently
small. The same goes for t→ +∞, so Eu(t) ≥ 0 for any |t| > t′0 > 0.

We first prove that PV : X s,ℓ+ → Ys−1,ℓ++1 is a Fredholm mapping. Again this reduces to
showing the analogue of (2.33), namely that for any N,M, s ∈ R, there is C > 0 such that,
provided all quantities are finite,

∥u∥s,ℓ+ ≤ C
(
∥PV u∥s−1,ℓ++1 + ∥u∥−N,−M

)
,(8.5)

∥u∥1−s,−1−ℓ+ ≤ C
(
∥PV u∥−s,−ℓ+ + ∥u∥−N,−M

)
,

Again, these estimates imply the Fredholm property by a standard argument.
To obtain them we again argue as in Section 2.8. We choose an open cover O1, O2, O3, O4

of the compressed cotangent bundle scṪ
∗
X. Note here that, due to our assumption of no

bound states, 3sc CharPV = 3scCharP0.

(1) Rp
± ⊂ O1 ⊂ {ℓ+ = −1/2 + ϵ}, in particular ±m ∈ O1 ∩W⊥ over SP.

(2) Rf
± ⊂ O2 ⊂ {ℓ+ = −1/2− ϵ}, in particular ±m ∈ O2 ∩W⊥ over NP.

(3) 3sc CharPV ⊂ O1 ∪O2 ∪O3.
(4) O3 ∩ 3sc CharPV is controlled along scHp by O1,
(5) O2 \ Rf is controlled along scH by O3, and
(6) O4 ⊂ 3scEll(PV ).

In this context, the meaning of item (3) is that, away from C, the standard characteristic
set τ 2 − |ζ|2 −m2 lies in O1 ∪O2 ∪O3, while over C,

[−∞,−m] ∪ [m,+∞] ⊂ O1 ∪O2 ∪O3 ∩W⊥

In fact, we will choose O1, O2, O3 such that, for some ϵ > 0,

(−m− ϵ,−m+ ϵ) ∪ (m− ϵ,m+ ϵ) = O1 ∩W⊥ over SP(8.6)

(−m− ϵ,−m+ ϵ) ∪ (m− ϵ,m+ ϵ) = O2 ∩W⊥ over NP(8.7)

[−∞,−m− ϵ/2) ∪ (m+ ϵ/2,+∞] = O3 ∩W⊥ over both SP and NP.(8.8)

In particular, O1 and O2 will be small neighborhoods around R over SP and NP respectively.
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The meaning of (4) must now be understood in scṪX, in the sense that any point τ0 ∈
W⊥ ∩O3 over, say, SP, corresponds to all points τ 20 − |ζ|2−m2 = 0 over SP, and the control

assumption implies that for any such ζ, there exists some point q ∈ scT
∗
X such that for some

s ∈ R: (1) expscHp
(sq) = (SP, τ0, ζ) and (2) either q ∈ O1 ∩ (scT

∗
X \ scT

∗
SPX) or q ∈ scT

∗
SPX

and τ(q) ∈ O1. Similarly for O2 being controlled by O3.
Such a collection O1, O2, O3, O4 of open sets can be constructed as follows. Our O1 must

be a set which contains the SP radial sets and ±m ∈ W⊥ over SP. For this we can take,
near SP, a set of the form (−m− ϵ,−m+ ϵ)∪ (m− ϵ,m+ ϵ) ⊂ W⊥ over SP, union with the

set in scT
∗
X \ scT

∗
SPX:

(8.9)

⋃
±

({|τ ±m| < ϵ})
⋃({ |τ ±m|

⟨τ, ζ⟩ < ϵ

}⋂
{⟨τ, ζ⟩ > 1/ϵ}

)
⋂

{t < −1/ϵ, 0 < |y| < ϵ}.

This is a union of a basic neighborhood around τ = ±m in the uncompactified Ṫ ∗X union
with an open set around the limit points of τ±m on the fiber boundary, all localized near SP
by the intersection in the second line. We take the union of this with an open set containing
Rp away from SP, for example with the coordinate function w which defines the radial set
(see (2.25)), simply taking

(8.10) {|w| < ϵ}
⋂

{t < −1/ϵ, |y| > ϵ/2}
works. For O2 we define the set in the exact same way but near NP.

For O3 we will take an open neighborhood of 3sc Char(PV ) in the complement of O1 ∪O2.

Again we can be explicit. We take O3 to be as in (8.8) on W⊥ over both C, thus nearby O3

we take as in (8.9), namely with identical to (8.9) except with {|τ ±m| > ϵ/2} in the first
term. Doing the exact same over NP, we take the union of these with a small neighborhood
of 3sc Char(PV ) from the radial sets and the poles, for example, with

{|w| > ϵ/2}
⋂

{|y| > ϵ/2}
⋂

{|σsc,2,0(PV )| < ϵ}.
Then O4 we take any open neighborhood of the closure of the complement O1 ∩ O2 ∩ O3.
Necessarily O4 ⊂ 3scEll(PV ).

Note that, due to the nature of scṪ
∗
X and, correspondingly, 3sc-ellipticity, the sets O1 and

O3, for example, necessarily overlap at the intersection of the closures of {τ = ±m} with
the fiber boundary. This is simply because all closures of sets of the form {τ = c} intersect
over the fiber boundary at the “fiber equator”.

Keeping this in mind, we now choose a collection B1, B2, B3, B4 ∈ 3scΨ0,0 (in fact in scΨ0,0)
with

(8.11) 3scWF′(Bi) ⊂ Oi

as in Section 2.8. Due to the overlap just described, the conditions 3scWF′(Bi) ⊂ Oi are
ambiguous, in that they do not indicate the behavior of the Bi at the fiber equator above
C. To clarify this, we take the approach that we require that

(8.12) Ċ3sc[X;C] ⊂
4⋃
i=1

3scEll(Bi),
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meaning each point in Ċ3sc[X;C]X is is in the elliptic set of some Bi (4.30). Over SP or NP,
since ellipticity at τ0 ∈ W⊥ requires ellipticity of the symbol out to fiber infinity over τ = τ0,
the condition is incompatible with the Bi forming a partition of unity. Note however that
any collection Bi satisfying (8.12) gives the “same control” as a partition of unity, namely,
for any N,M ∈ R, and any s, ℓ,

(8.13) ∥u∥s,ℓ ≲ ∥B1u∥s,ℓ + ∥B2u∥s,ℓ + ∥B3u∥s,ℓ + ∥B4u∥s,ℓ + ∥u∥−N,−M
(Indeed, in that case

∑4
i=1B

∗
iBi is globally 3sc-elliptic and (8.13) follows from the Fredholm

property for globally 3sc-elliptic operators and boundedness of B∗
i .)

To construct such Bi which satisfy both (8.11) and (8.12) we can use cutoff functions
and the expressions for the Oi above. For example, we can take B1 = OpL(χ1) with

χ1 :
scT

∗
X −→ R identically 1 on sets of the forms (8.9) and (8.10) with the ϵ replace

by a smaller ϵ′ > 0, and with support in the union of (8.11). Such B1 has N̂ff(B1)(τ) = Id
for τ ∈ [−m− ϵ′,−m+ ϵ′] ∪ [m− ϵ′,m+ ϵ′] and indeed Rp ⊂ 3scEll(B1). We define B2 and
B3 similarly.

Deducing the estimates in (8.5) for u using the Bi now follows exactly along the lines
of the deduction in Section 2.8, by obtaining estimates exactly as in (2.34) - (2.37) with
PV replacing P0. Thus, again, u ∈ X s,ℓ+ , then u is above threshold near Rp

±, now in the
3sc-sense. That is:

(1) Putting together Proposition 2.11 and Proposition 7.1, we obtain (2.34) (with PV
replacing P0) with the same ℓ′ < ℓ+ and −1/2 < ℓ′ < ℓ+.

(2) Again, since 3scWF′(B3) is controlled by 3scEll(B1), by Proposition 6.1 we have (2.35)
(with PV ).

(3) By Proposition 2.13 and Proposition 7.2 we have the below threshold estimate for
B2 in (2.36), and

(4) We have the 3sc-elliptic estimates so by Proposition 4.20 we obtain (2.37) (with PV ).

Since we control u by the Biu via (8.13) we again obtain the Fredholm estimates in (8.5),
the second estimate being deduced by applying the above and below threshold estimates to
the opposite radial sets. We again can absorb the ℓ′ term on the left by using (2.38). Thus
the operator in (8.2) is Fredholm.

To see that PV is invertible under the given assumptions, we need only check that its
kernel and cokernel are zero. Distributions

u ∈ ker
(
PV : X s,ℓ+ −→ Ys−1,ℓ++1

)
must, thanks to the above threshold radial points estimates, in fact be rapidly decaying
along with all their derivatives to the past. Using the energy Eu(t) and a standard Grönwall
argument gives that u(t, z) ≡ 0 for t ≫ 0. Indeed, dEu(t)/dt ≤ k(t)Eu(t) where k(t) =
O(1/|t|)2 as t → −∞. Since Eu(t) → 0 as t → −∞ the differential Grönwall inequality
shows that Eu(t) ≡ 0 for t≪ 0. By the positivity of the energy, we obtain that u(t) = 0 for
t≪ 0. Then uniqueness of solutions to the Cauchy problem shows u ≡ 0 globally.
The cokernel of (8.2) can be identified with

ker
(
PV ∗ : X 1−s,−1−ℓ+ −→ Y−s,−ℓ+

)
and the same argument but using the energy estimates at t → +∞ shows the cokernel is
zero.
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We have shown that PV : X s,ℓ+ → Ys−1,ℓ++1 for any s ∈ R and admissible forward
weight ℓ+ is invertible. Indeed the value of the inverse mapping is independent of the
specific choice of s and ℓ+. To see this, let s′ ∈ R and ℓ′+ an admissible weight and given

f ∈ Hs−1,ℓ++1
sc ∩ H

s′−1,ℓ′++1
sc , let u ∈ X s,ℓ+ and u′ ∈ X s′,ℓ′+ with PV u = f = PV u

′. Then

u− u′ ∈ X s̃,ℓ̃+ for some s̃ ∈ R and ℓ̃+ admissible forward weight. Then PV (u− u′) = 0 and
therefore u = u′.

Thus, we can unambiguously speak of the inverse of PV , which we denote by (PV )
−1
for . The

fact that (PV )
−1
for satisfies the forward condition, (1.2), follows again from energy arguments.

Indeed if f ∈ Hs−1,ℓ++1
sc and supp f ⊂ {t ≥ T}, then u = (PV )

−1
forf satisfies the above

threshold estimates at Rp and thus is a Schwartz function as t→ −∞ and the same energy
argument shows that suppu ⊂ {t ≥ T}.

8.2. With bound states. In this section, we prove Theorem 8.3 and Theorem 8.4. We make
appropriate adjustments to the above propagator construction to include the possibility that
there are bound states of the Hamiltonian ∆ +m2 + V± with (negative) energy bigger than

0. Such states appear as elements in the kernel of (P̂V )ff(τ) for τ ∈ (−m,m).
In discussing bound states, it is useful to distinguish the behavior of PV at NP and SP, so

for the remainder of this section we include the pole in the notation for the indicial operator:

(P̂V )ff,+(τ) = indicial operator of PV at NP,

while (P̂V )ff,−(τ) is the indicial operator at SP. Similarly we write

W⊥
+ = W⊥ over NP

and W⊥
− = W⊥ over SP. Recall that, by scattering ellipticity, for |τ | < m,

(P̂V )ff,±(τ)w = 0 =⇒ w ∈ S(Rn),

and thus by self-adjointness of (P̂V )ff,±(τ),

(8.14) τ ∈ Ellff,±(PV ) ⇐⇒ ker((P̂V )ff,±(τ)) = {0}.
We therefore have the elliptic estimate for PV over ff.

Lemma 8.6. Let K ⊂ (−m,m) ⊂ W⊥
+ be a compact set such that

(8.15) τ ∈ K =⇒ ker((P̂V )ff,+(τ)) = {0}.
Then there is Q ∈ 3scΨ0,0(Rn+1) with K ∈ Ellff(Q) such that for any M,N ∈ R, s, ℓ ∈ R,
and any Q′ ∈ 3scΨ0,0(Rn+1) with 3scWF′(Q) ⊂ 3scEll(Q′) ∩ 3scEll(PV ), there is C > 0 such
that,

∥Qu∥s,ℓ ≤ C (∥Q′PV u∥s−2,ℓ + ∥u∥−N,−M) .

The same goes near SP with the relevant +’s replaced by −’s.

Proof. This follows immediately from Proposition 4.20 and the fact that K ⊂ Ellff(PV ). □

It is possible that there are finitely many points τ0 ∈ (−m,m) such that (P̂V )ff(τ0) is not
invertible, and the remainder of this section proves estimates near such τ0 ∈ W⊥.
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First we establish some notation. Let λ(τ) :=
√
m2 − τ 2, define the eigenspace (set of

bound states) of ∆z + V±(z) at frequency λ:

E±(λ(τ0)) := ker
(
(P̂V )ff,±(τ0) : H

s,ℓ
sc (ff) −→ Hs−2,ℓ

sc (ff)
)
.

Thus E+(λ(τ0)) is the collection of bound states of ∆z + V+ with frequency λ(τ). Again,
E±(λ(τ0)) ⊂ S(Rn), so the eigenspace is independent of s, ℓ. We define the set of τ values
of bound states:

(8.16) BV,± ⊂ {τ ∈ (−m,m) : E±(λ(τ)) ̸= {0}}
As discussed above, we assume that BV,± is finite, and

(8.17) 0 ̸∈ BV,±,
i.e. ∆z +m2 + V+(z) has no eigenvalue at zero.

Our theorem for the causal propagators in the presence of bound states will follow the
statement and proof of Theorem 8.2 closely; we show that the same mapping (8.2) is Fred-
holm, and then prove under additional assumptions on decaying modes that it is invertible.

The theorem is proven at the end of this section using the additional estimates proven
near BV,± in Proposition 8.7.
We now fix τ0 ∈ BV,+. There is therefore w ∈ E(λ(τ0)) with w ̸≡ 0 and we therefore have

the oscillatory solution

PV+(e
±iτ0tw) ≡ 0.

Since w ⊂ S(Rn
z ), this implies

e±iτ0tw(z) ∈ H∞,−1/2−ϵ
sc (Rn+1).

for any ϵ > 0 but not for ϵ = 0. We therefore expect a spacetime weight threshold of −1/2
also for estimates localized near BV,+.
Near τ0 ∈ W⊥, we will prove estimates with a spacetime weight loss identical to those in

the radial points estimates above. We will see that this is a consequence of the fact that our
approximate projection onto the solutions eitτ0w(z) intertwine PV with D2

t − τ 20 to leading
order. Our main result will be the following.

Proposition 8.7. Assume that (8.1) and (8.17) hold. Then for any ϵ > 0, there exists
Q ∈ 3scΨ0,0(Rn+1) such that

(8.18) [−m+ ϵ,m− ϵ] ⊂ Ellff(Q),

and for any G ∈ 3scΨ0,0 with 3scWF′(Q) ⊂ 3scEll(G), then for s, ℓ,N,M ∈ R, we have the
following estimates.

If ℓ < −1/2, there is C > 0 such that, if Qu ∈ Hs,ℓ
sc (Rn+1) and GPV u ∈ Hs−2,ℓ+1

sc (Rn+1),
then

(8.19) ∥Qu∥s,ℓ ≤ C(∥GPV u∥s−2,ℓ+1 + ∥u∥−N,−M).

If ℓ > −1/2, and ℓ′ ∈ R has ℓ > ℓ′ > −1/2, then there is C > 0 such that, if Gu ∈
H−N,ℓ′

sc (Rn+1) and GPV u ∈ Hs−2,ℓ+1
sc (Rn+1), then Qu ∈ Hs,ℓ

sc and

(8.20) ∥Qu∥s,ℓ ≤ C(∥GPV u∥s−2,ℓ+1 + ∥Gu∥s−2,ℓ′ + ∥u∥−N,−M).

The proposition follows from the elliptic regularity estimates in Lemma 8.6, and the fol-
lowing lemma, which is simply Proposition 8.7 microlocalized near a fixed τ0 ∈ BV,+.



90 D. BASKIN, M. DOLL, AND J. GELL-REDMAN

Lemma 8.8. Let τ0 ∈ BV,+, i.e. let τ0 ∈ (−m,m), τ0 ̸= 0 and E+(λ(τ0)) ̸= {0}. For any
Q ∈ 3scΨ0,0(Rn+1) with τ0 ⊂ Ellff(Q) and 3scWF′(Q) sufficiently small, for any, G ∈ 3scΨ
with 3scWF′(Q) ⊂ 3scEll(G), then for s, ℓ,N,M ∈ R, the estimates in Proposition 8.7 hold.

The lemma is proven at the end of this section.
The proof proceeds by approximating projection onto the solutions eiτ0tE+(λ(τ0)). If

Πτ0 = Πτ0(z, z
′) is the integral kernel of orthogonal projection in L2(Rn

z ) onto E+(λ(τ0)), i.e.
for some orthonormal bases {wj}Nj=1 of E+(λ(τ0)),

Πτ0(z, z
′) :=

N∑
j=1

wj(z) · wj(z′) ∈ S(Rn × Rn),

then ei(t−t
′)τ0Πτ0(z, z

′) is the integral kernel of this projection. However, as we will see below,
ei(t−t

′)τ0Πτ0(z, z
′) is not the integral kernel of a 3sc-PsiDO.

We proceed by smoothing in t in addition to projecting onto E+(λ(τ0)); that is, we project
onto a small τ -window around τ0 on the t-Fourier transform side. Let χ≥t0 ∈ C∞(R) be a
bump function supported near +∞ with χ≥t0(t) = 1 for t ≥ t0 − 1 and χ≥t0(t) = 0 for
t ≤ t0 − 2, and let χτ0 ∈ C∞(Rτ ) be a bump function supported near τ0, so χτ0(τ) = 1 for
|τ − τ0| < δ and χτ0(τ) = 0 for |τ − τ0| ≥ 2δ. Consider the operator defined by the integral
kernel which: (1) cuts off to large time, (2) localizes in the t-momentum variable around τ0,
(3) projects onto E+(λ(τ0)):

Kτ0(t, z, t
′, z′) := χ≥t0(t) · Πτ0 ◦ F−1

τ→t ◦ χτ0(τ) · Ft′→τ ◦ χ≥t0(t
′)(8.21)

=
1

2π

∫ ∞

−∞
ei(t−t

′)τχ≥t0(t) · χτ0(τ) · Πτ0(z, z
′) · χ≥t0(t

′) dτ(8.22)

This Kτ0 will be used as a stand-in for projection onto eiτ0tE+(λ(τ0)) near t = +∞.

Lemma 8.9. For δ > 0 sufficiently small in the definition of χτ0,

Kτ0 ∈ 3scΨ−∞,0, and (K̂τ0)ff(τ) = χτ0(τ)Πτ0 ,(8.23)

and

(8.24) 3scWF′[PV+ , Kτ0 ] = ∅.

Proof. Proving that an operator lies in 3scΨ can be done using the double space characteri-
zation in Section 3 of [36], but we argue directly using our work above. First we note that,
for any χ ∈ C∞

c (R), the operator without the time cutoffs:

K̃χ :=

∫ ∞

−∞
ei(t−t

′)τ · χ(τ) · Πτ0(z, z
′) dτ(8.25)

is a 3sc-operator since Πτ0(z, z
′) ∈ scΨ−∞,−∞(Rn), in fact K̃χ = OpL(k) for k = χ(τ)a(z, ζ)

with a ∈ S(Rn
z × Rn

ζ ). This shows directly that K̃χ is in 3scΨ0,0 and has indicial operator
as in (8.23). Then multiplying on the left by χ≥t0(t) gives an operator OpL(χ≥t0(t)k) which

remains in 3scΨ0,0 since k is rapidly decaying in z. The adjoint of that operator K̃χχ≥t0 is

thus also in 3scΨ0,0. Then Kτ0 itself can be expressed as a composition χ≥t0K̃χ1 ◦ K̃χ2χ≥t0
where χ1 = χτ0 and χ2χτ0 = χτ0 , and is thus in 3scΨ0,0. The indicial operator statement
follows from the composition and adjunction properties of indicial operators.
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Finally, [PV + , K̃χ] = 0 for any χ. Since [PV+ , Kτ0 ] differs from [PV + , K̃χτ0
] only by terms

with derivatives falling on χ≥t0(t), the commutator [PV+ , Kτ0 ] is microsupported on

χ′
≥t0(t) ⊂ {t ∈ [t0 − 2, t0]},

but then χ′
≥t0(t)Πτ0 has symbol which is rapidly decaying to the spacetime boundary, so

(8.24) holds. □

We will use the approximate projection Kτ0 mainly by exploiting the following feature.

Corollary 8.10. τ0 ∈ Ellff(PV +Kτ0).

Proof. This follows directly from ( ̂PV +Kτ0)ff(τ0) = (P̂V )ff(τ0) + Πτ0 , since Πτ0 is exactly

projection onto the kernel of the self-adjoint operator (P̂V )ff(τ0). □

To obtain estimates for PV u near τ0 ∈ W⊥, we first use the elliptic estimates for PV +Kτ0

near τ0 ∈ W⊥, namely, that for any Q,G ∈ 3scΨ0,0 with τ0 ∈ Ellff(Q) and 3scWF′(Q) ⊂
3scEll(G) ∩ 3scEll(PV +Kτ0), for any M,N ∈ R there is C > 0 such that

∥Qu∥s+2,ℓ ≤ C (∥G(PV +Kτ0)u∥s,ℓ + ∥u∥−N,−M)

≤ C(∥GPV u∥s,ℓ + ∥GKτ0u∥s,ℓ + ∥u∥−N,−M).
(8.26)

What we will show below is that, off the spacetime weight ℓ = −1/2, for Q with sufficiently
small support around τ0 ∈ W⊥, that the K0u term on the RHS can be bounded by PV u.
This will follow by applying ODE techniques to the easily verified formula

(8.27) PV+Kτ0u = (D2
t − τ 20 )Kτ0u+Ru

where R ∈ 3scΨ−∞,−∞, to obtain estimates for Kτ0u in terms of PV+Kτ0u. Then using (8.24)
we will remove the Kτ0u from (8.26) entirely. Then applying ODE methods to the first term
on the RHS, or using a positive commutator argument akin to that of Section 7, we obtain
the following lemma.

Lemma 8.11. Let ℓ ∈ R. Provided ℓ < −1/2, for any s0,M,N ∈ R there is C such
that, if Kτ0u ∈ Hs,ℓ

sc and PV+Kτ0u ∈ Hs,ℓ+1
sc , then for Q,Q′ ∈ 3scΨ0,0 with τ0 ∈ Ellff(Q) and

3scWF′(Q) ⊂ 3scEll(Q′), we have Kτ0u ∈ Hs0,r
sc and PV+Kτ0u ∈ Hs0,ℓ+1

sc , and

(8.28) ∥QKτ0u∥s0,ℓ ≤ C(∥Q′PV+Kτ0u∥s,ℓ+1 + ∥u∥−N,−M).

The same is true if, in the definition of Kτ0, the projection Πτ0 is replaced by orthogonal
projection onto any subspace of E+(λ(τ0)).

If instead ℓ > −1/2, for any s0,M,N ∈ R there is C such that, if Kτ0u ∈ Hs,ℓ
sc and

PV+Kτ0u ∈ Hs,ℓ+1
sc , possibly after taking χτ0 in Kτ0 with smaller support, we have Kτ0u ∈ Hs0,ℓ

sc

and PV+Kτ0u ∈ Hs0,ℓ+1
sc , and ℓ > ℓ′ > −1/2,

(8.29) ∥QKτ0u∥s0,ℓ ≤ C(∥Q′PV+Kτ0u∥s,ℓ+1 + ∥u∥−N,ℓ′).
The same is true if, in the definition of Kτ0, the projection Πτ0 is replaced by orthogonal
projection onto any subspace of E+(λ(τ0)).

With the lemma, we can now conclude the proof
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Proof of Lemma 8.8. From (8.26) and Lemma 8.11, treating ℓ < −1/2 first, we take Q,G
and G′ with 3scWF′(G) ⊂ 3scEll(G′) to obtain

∥Qu∥s+2,ℓ ≲ ∥GPV u∥s,ℓ + ∥GKτ0u∥s,ℓ + ∥u∥−N,−M
≲ ∥GPV u∥s,ℓ + ∥G′PV+Kτ0u∥s,ℓ+1 + ∥u∥−N,−M
≲ ∥GPV u∥s,ℓ + ∥G′Kτ0PV+u∥s,ℓ+1 + ∥u∥−N,−M
≲ ∥GPV u∥s,ℓ + ∥G′Kτ0PV u∥s,ℓ+1 + ∥GKτ0(PV − PV+)u∥s,ℓ+1 + ∥u∥−N,−M ,

where we used [PV+ , Kτ0 ] ∈ 3scΨ−∞,−∞ in the fourth line.
The first two terms may both be bounded by G′′PV u for G′′ with 3scWF′(G)∪3scWF′(G′) ⊂

3scEll(G′′) by choosing 3scWF′(Kτ0) sufficiently small. Moreover, PV −PV+ = −(V −V+) and
therefore by (8.1) the third term is controlled by ∥u∥−N,ℓ−1 for any N , and we obtain overall
that there is C > 0 such that, if all the terms below are finite, then we have an estimate

∥Qu∥s+2,ℓ ≤ ∥G′′PV u∥s,ℓ + ∥G′′u∥−N,ℓ−1 + ∥u∥−N,−M .

Iterating this estimate allows us to drop the r − 1 term on the right.
The proof for ℓ > −1/2 is similar. □

We can now use Proposition 8.7 and the arguments in Section 8.2 to prove Theorem 8.3.

Proof of Theorem 8.3. That PV acting in (8.2) is Fredholm follows exactly as in the proof of
Theorem 8.2 using exactly the same methodology, adding in B5,± elliptic on (−m+ ϵ′,m−
ϵ′) ⊂ W⊥

± and the estimates in Proposition 8.7.
The injectivity follows from exactly the same energy estimate argument, and the surjec-

tivity is that same energy estimate argument applied to the adjoint.
The property (1.2) follows from the same argument as in the proof of Theorem 8.2. □

Proof of Theorem 8.4. For static V = V (z), the Fredholm statement holds even in the pres-
ence bound states with energy less than −m2. The fact that there are no elements in the
kernel can be concluded directly from seperation of variables since on the finite family of
eigenfunctions HV the solutions are explicit and orthogonal to this family the energy argu-
ment holds. □

Index of Notation

• S is Schwartz functions, S ′ tempered distributions
• C∞

c is smooth and compactly supported
• Ċ∞(M) for a manifold with cornersM is the space of smooth functions which vanish
to infinite order together with all their derivatives at the boundary

• σ(A) the spectrum of an operator A
• ≲, used in an inequality when an unspecified positive constant is needed on the right
hand side

• HV := ∆ +m2 + V , the Hamiltonian, for V possibly time-dependent, page 3
• PV := D2

t −HV , the Klein-Gordon operator, page 3
• Hs,ℓ

sc (Rn+1),Ys,ℓ,X s,ℓ the weighted L2-based Sobolev spaces and the a priori spaces,
page 5

• P0, the free Klein-Gordon operator, page 9
• Diffmsc and Diffm,rsc the scattering differential operators, page 10
• X, the radial compactification of Rn+1

t,z , page 11
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• scT ∗X, scT
∗
X the scattering cotangent and its fiber compactification, page 11

• ρbase, ρfib, boundary defining functions for scT
∗
X, page 12

• jsc,m,r(A) the scattering principal symbol, page 12

• σsc,m,r(A), N̂sc,m,l(A) the fiber and normal components of the scattering principal
symbol, respectively, page 12

• scSm,r(X), scattering symbols, page 12,
• scΨm,r of scattering operators, page 12,
• Csc(X) the boundary of scT

∗
X, page 12

• WF′(A) the scattering operator wavefront set, Section 2.3
• Ell(A) the scattering elliptic set, Section 2.3
• Char(A) = Csc(X) \ Ell(A), the characteristic set of A, Section 2.3
• Hp and

scHp the Hamilton vector field and its rescaling, equations (2.17) and (2.18),
page 14

• R the radial set, and Rf
±,Rp

± its four components, page 15 and below
• ℓ variable order spacetime weight, Section 2.4
• ℓ± forward and backward weights, Section 2.8
• V+(z) = limt→∞ V (t), the limiting potential, Section 3.4, similarly for V−
• C ⊂ X, the “poles”, C = NP ∪ SP, page 28
• [X;C] the blow up of the poles in X, page 28
• βC the blow down map, page 28
• Diffm,r3sc the 3sc-differential operators, page 29

• 3scT ∗[X;C], 3scT
∗
[X;C] the 3sc-cotangent bundle and compactification, page 30,

• ρff , ρmf , ρfib , boundary defining functions for 3scT
∗
X, page 30

• W⊥, the lines of τ over the poles, page 31
• π : 3scT ∗

CX −→ W⊥ the projection on W⊥, page 31
• fibeq the fiber equator, page 31
• 3scSm,r(X), 3sc-symbols, page 34
• 3scΨm,r the 3sc-operators page 34
• N̂ff(A) = Âff and N̂ff,r(A) the indicial operators, page 37
• aff the weighted front face restriction, page 38
• j3sc,m,r(A) the principal symbol, equation (4.12), page 40

• σ3sc,m,r(A) the fiber symbol, N̂mf,m,r(A) the “main face” symbol (restriction to the
spacetime boundary), page 40

• Ψm,r,k
scl,sc,±1/τ the two-sided semiclassical scattering operators, page 40

• UH+ the upper half of fiber infinity over ff, page 45
• Hs,ℓ

scl the semiclassical Sobolev spaces of order s, ℓ, page 46

• W⊥ the compactification of W⊥, page 46

• scṪ ∗X, scṪ
∗
X is the compressed cotangent bundle and its compactification, page 47

• π⊥ the projection to scṪ ∗X, page 47
• C3sc[X;C], Ċ3sc[X;C], equations (4.29) and (4.30), page 47
• γ3sc, page 47
• 3scWF′(A) the 3sc-operator wavefront set, Definition 4.17, page 48
• 3scEll(A) the 3sc-elliptic set, Definition 4.18, page 49
• 3sc Char(A) the 3sc-characteristic set, page 49
• Gψ,0, functional localizer, equation (5.1), page 53
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• Gψ, functional localizer, Definition (5.6), page 56
• πX,τ , page 65
• Σ, equation (6.2), page 66
• χ0, χ1 special cutoff functions, page 68
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