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Abstract. We develop a theory of Feynman propagators for the massive Klein–
Gordon equation with asymptotically static perturbations. Building on our previous
work on the causal propagators, we employ a framework based on propagation of
singularities estimates in Vasy’s 3sc-calculus. We combine these estimates to prove
global spacetime mapping properties for the Feynman propagator, and to show that
it satisfies a microlocal Hadamard condition.

We show that the Feynman propagator can be realized as the inverse of a mapping
between appropriate L2-based Sobolev spaces with additional regularity near the
asymptotic sources of the Hamiltonian flow, realized as a family of radial points on a
compactified spacetime.
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1. Introduction

Let (M, g) be a globally hyperbolic, asymptotically Minkowski spacetime as considered
previously by the authors, [2, 3, 7]. In this work, we construct the Feynman propagator
for the Klein–Gordon operator

PV := □g −m2 − V .

where m > 0 and V is a smooth potential function with spatial decay.
1
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On flat Minkowski spacetime (Rn+1, gM), the Feynman propagator for the free Klein–
Gordon operator, □gM −m2 = D2

t −∆−m2, is the Fourier multiplier by the distribution
(τ 2 − |ζ|2 −m2 + i0)−1. In this work, we adopt the perspective (taken in the work
of the Gell-Redman–Haber–Vasy [7] and Gerard–Wrochna [9]) that an appropriate
generalization of the Feynman propagator for PV is an operator which is both a global
spacetime inverse for PV (e.g. on compactly supported distributions) and which satisfies
the well-known wavefront set property, sometimes called the “microlocal Hadamard
condition”, detailed below.

Our main results are Theorem 5.1 and Theorem 7.3, which prove existence of the
Feynman propagator, and Theorem 6.3, which proves a variant of the microlocal
Hadamard condition.

We now provide a simplified version these results. On Minkowski space Rn+1, let
V = V (t, z) be given by

V (t, z) = V0(z) + V1(t, z) ,(1)

where V0 ∈ S−1(Rn;R) exhibits symbolic decay of order −1 and V1 ∈ C∞(Rn+1;R) such
that

|∂kt ∂αz V1(t, z)| ≲ ⟨t, z⟩−1−k⟨z⟩−|α|

for all k ∈ N0 and α ∈ Nn
0 .

Theorem 1.1. If HV0 = ∆ +m2 + V0 has purely absolutely continuous spectrum, then
there exists a bounded linear operator (PV )−1

Fey : C−∞
c (Rn+1) → C−∞(Rn+1) such that for

all f ∈ C−∞
c (Rn+1),

PV (PV )−1
Feyf = (PV )−1

FeyPV f = f ,

and

WFcl((PV )−1
Feyf) ⊂ WFcl(f) ∪

⋃
s≥0

Φs(WFcl(f) ∩ Char(P0)) .

where WFcl denotes the classical wavefront set of a distribution, Φs is the flow generated
by the Hamilton vector field of the principal symbol of P0 = □g −m2 on the cotangent
bundle.

Theorem 5.1 is in fact more general and allows for the possibility of first order
perturbations, as well as for different limiting potentials as t → ±∞. In the case
that the limiting Hamiltonians have bound states, we can prove the same conclusions
under slightly stronger assumptions on decay of V − V0, see Theorem 7.3 for a precise
statement. The appearance of the operator P0 in the theorem is explained in our
previous work [2]. We mention here that the characteristic sets and the flows of PV
and P0 are identical away from the singular locus of V on a compactified spacetime, a
set which consists of two points, the “poles”, described in detail below.
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There are four standard propagators, or inverses, that arise in the study of wave
propagation: the forward and backward causal propagators, which we denote by G±,
and the Feynman and anti-Feynman propagators. Our work applies equally well to
anti-Feynman propagators, which can be constructed exactly as below but with the
opposite direction of regularity propagation along the flow.

The causal propagators G± can be characterized easily by the support condition

supp f ⊂ {±t ≥ T} =⇒ suppG±f ⊂ {±t ≥ T} .

The Feynman propagator (PV )−1
Fey, however, does not have such a simple characterization.

The physical intuition is that (PV )−1
Fey propagates positive energy forward in time and

negative energy backward in time. This can be made precise either by prescribing
asymptotics or using a wavefront set condition. We describe the wavefront set condition
below in Section 6.

The asymptotic condition is simple to describe in the case of the free Klein–Gordon
equation on Minkowski space. There we can solve P0u = f for f ∈ C∞

c (Rn+1) using the
Fourier transform and observe that solutions have asymptotics

u = t−n/2
(
af

+(z/t)eim
√
t2−|z|2 + af

−(z/t)e−im
√
t2−|z|2

)
(1 +O(1/t))(2)

as t → +∞ and |z|/t ≤ c < 1 for some functions af
+ and af

−. (Here the superscript
f stands for “future”, not for the forcing.) Similarly we find ap

± for t → −∞. The
Feynman propagator produces the solution operator with af

− ≡ 0 and ap
+ ≡ 0.

The relationship between the Hamiltonian flow and the asymptotic form for Feynman
solutions can be understood through consideration of the phase functions

ϕ±(t, z) = ±m
√
t2 − |z|2.

The graphs of these functions in the cotangent bundle, i.e., the submanifold

{(t, z, ∂tϕ±, ∂zϕ±) : (t, z) ∈ Rn+1}

defines the surface

(3) {τ 2 − (|ζ|2 +m2) = 0, τz + tζ = 0,±τ > 0}.

We consider a compactification Rn+1 of Rn+1; the boundary of this compactification
is (locally) given by x = ±1/t = 0 and is parametrized by the variable y = ±z/t.
The set (3) can be restricted to the boundary; this restriction has four components,
corresponding to the choices of ±t > 0 and ±τ > 0, and can be identified precisely as
the limit points of the trajectories of the Hamiltonian flow of the Hamiltonian function
τ 2 − (|ζ|2 +m2), i.e., the symbol of P0.

The coefficients af
−, a

p
+ correspond to the sources of the Hamiltonian flow, Rsrc. (In

terms of the sign choices above, Rsrc corresponds to t < 0, τ > 0 and t > 0, τ < 0.)



4 D. BASKIN, M. DOLL, AND J. GELL-REDMAN

The coefficients af
+, a

p
− microlocally correspond to the sinks Rsnk (t > 0, τ > 0 and

t < 0, τ < 0); nontrivial asymptotics at the former are excluded by the mapping
properties of the Feynman propagator, while at the latter they are allowed.

To construct the Feynman propagator, we follow the method developed by Vasy [26],
in which a propagator is realized as the inverse of a Fredholm operator. That is, we
define families of Hilbert spaces X ,Y of tempered distributions on Rn+1 such that
PV : X −→ Y is a Fredholm operator, and then subsequently show that this operator is:
(1) invertible under certain assumptions on the potential V , and (2) its inverse satisfies
the defining properties of the Feynman propagator.

In the absence of a potential V , or more generally in the setting in which V = V (t, z)
is a decaying scattering potential on Rn+1 (i.e., V enjoys symbolic decay jointly in space
and time), Gerard–Wrochna [9] constructed the Feynman propagator via a related
method. In the same setting, Vasy [28] proved estimates which lead directly to an
alternative construction of a Feynman propagator, which we reviewed in our prior
work [2, Sect. 2].

In each of these constructions, the spaces X ,Y referred to above are subspaces of
scattering Sobolev spaces Hs,ℓ

sc (Rn+1) = ⟨t, x⟩−ℓHs
sc(Rn+1). In Vasy’s treatment [28]

(and in our treatment of causal propagators [2]) one takes ℓ = ℓ to be a variable order,
i.e., a function ℓ = ℓ(t, z, τ, ζ). Which propagator is selected depends on the properties
of ℓ, namely whether it is above or below the threshold value of −1/2 at the four
components of the radial set. For the Feynman propagator, one uses ℓ > −1/2 at Rsrc
and ℓ < −1/2 at Rsnk.

To analyze PV for asymptotically static potentials V , we use an adaptation of Vasy’s
3sc-pseudodifferential calculus introduced in [24,25]. The modifications needed to treat
the Klein–Gordon operator were presented in our prior paper [2], where we proved
propagation estimates at all parts of phase space for the operators PV . In that paper,
we gave a construction of the causal propagators, in which the range of, say, the forward
causal propagator G+ is contained in a variable order weighted space Hs,ℓ+

sc (Rn+1),
in which ℓ+ = ℓ+(t, z) is a function on space time which satisfies ℓ+ > −1/2 at ι−
and ℓ+ < −1/2 at ι+, where ι+, ι− are future/past timelike infinity, respectively. The
significance of these conditions is that solutions G+f are allowed below threshold
asymptotics only to the future.

With this method, the main distinction between the treatment of the free Klein–
Gordon operator P0 and the perturbed operators PV is that the potential V is not
a smooth function on the standard radial compactification X = Rn+1. It fails to
be smooth precisely at the “north/south poles”, NP/SP, depicted in Figure 1 below.
To analyze the behavior of PV near the poles, one uses the (operator-valued) indicial
operators N̂ff,±(PV ), which are essentially the Fourier transform (in time) of the limiting
operator.
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The global nature of the indicial operator presents a technical obstacle in that variable
decay orders ℓ are incompatible with the indicial family. Since both Rsnk and Rsrc
have nontrivial projections at both poles, any construction of the Feynman propagator
with Vasy’s method must confront this issue. We do so by avoiding the use of variable
order spaces altogether, which is a key technical novelty of our construction. Instead,
we define spaces which enforce above threshold behavior at Rsrc through the use of a
microlocal cutoff. That is, we use microlocal cutoffs Qsrc supported at Rsrc to define the
X ,Y spaces and then subsequently show that the Feynman propagator thus constructed
does not depend on our choices.

As in our analysis of the causal propagators, the possible existence of bound states
for the limiting spatial Hamiltonians HV± plays an important role in determining the
potential existence of a kernel or cokernel in the Fredholm map constructed above.
When HV± are positive, we are able to construct the Feynman propagator as an operator
on C∞

c (Rn+1) (or more generally on distributions S ′ satisfying an appropriate wavefront
set condition.) This is done in Section 7.

1.1. Related work. Our work generalizes the results from Gérard–Wrochna [9,10] and
the implied construction in [28]. These works are the closest in outline to the present
work and yield Feynman propagators for Klein–Gordon operators whose potential
perturbations are “scattering” in spacetime; in particular their potentials decay in
spacetime.

The results of Derezinski–Siemssen [4, 5] are perhaps the most similar to the present
one in that they construct the Feynman propagator in a non-trivial time-dependent
setting using Kato’s “method of evolution equations” to construct propagators. Related
work on the existence of Feynman propagators via essential self-adjointness of the
Klein–Gordon operator by Nakamura–Taira [20, 21] and Vasy [29]. Moreover, the
Feynman propagator appears in index theory on Lorentzian manifolds [1].

As our results use many-body microlocal methods, the only assumptions made in the
finite time region are dynamical, namely the assumption that the flow is non-trapping.
Therefore, the global spectral theoretic assumptions in Derezinksi–Siemssen (see point
3 in the introduction [5]) are not needed. Interestingly, assumptions on the point
spectrum do arise in the t → ±∞ limit. Specifically, we obtain a Feynman-type
Fredholm problem so long as there is no point spectrum for the limiting Hamiltonians
at 0. We then obtain a Feynman propagator, i.e., inverse to the Fredholm mapping, if
the limiting Hamiltonians are positive.

Although we do not study many-body Hamiltonians directly here, since our work
uses the 3sc-calculus of Vasy, the analysis herein is related to previous work on such
operators. We do not include an exhaustive list of related work in that field here, but
we note that the use of microlocal cutoffs in many -body scattering has a long history.
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We draw particular attention to the pioneering work of Gérard–Isozaki–Skibsted [8],
which uses functions of the Hamiltonian to construct commutators. This strategy was
later adopted by Vasy, and informs our propagator construction, both here and in our
previous work.

Constructing Fredholm problems for operators on non-compact manifolds requires a
precise analysis at infinity. However, microlocal analysis and in particular the calculus
of Fourier integral operators has been used by Duistermaat–Hörmander [6] to prove the
existence of distinguished parametrices, which are inverses modulo smoothing operators,
for hyperbolic operators. In particular, they constructed a Feynman parametrix.
Radzikowski [22] showed that the wavefront set condition that distinguishes the Feynman
parametrix is equivalent to the Hadamard condition of quantum field theory. We
also refer to Islam–Strohmaier [17] for a more modern treatment of distinguished
parametrices which also allows for vector-valued operators.

For other recent work using tools from the many-body analysis of Vasy to study
hyperbolic PDE, see; Hintz and Hintz–Vasy [11–15]. See also the work of Ma on
many-body Hamiltonians [18] as well as recent work of Sussman on Klein–Gordon [23]
using microlocal methods.

The present paper differs from the works above in at least three significant ways.
To our knowledge, this paper is the first to construct the Feynman propagator for
asymptotically static potential without explicitly appealing to a global time-splitting or
spectral hypotheses on each time-slice. Our construction also has the advantage that a
microlocal Hadamard condition is easily proved (indeed, it is nearly automatic). Finally,
in contrast with other related constructions, our construction does not use variable
order Sobolev spaces. Vasy [30,31] employs an approach using second microlocalization
to analyze ∆ − λ2 in the λ → 0+ limit. The estimates proven in that work also
avoid the use of variable order spaces. That setting is structurally similar to that
of the Klein–Gordon operator plus a potential, provided the potential is “spacetime
scattering”, in particular meaning the potential functions decay in time.

Outline of the paper. The paper is organized as follows. In Section 2 we consider
the case that V ≡ 0, which puts us in the setting of scattering operators and while
it is possible in this case to use the same approach as for the causal propagator, we
construct the Feynman propagator using localizers to the radial set giving a simplified
version of the proofs of the main theorems. In Section 3 we recall the main properties
of the 3sc-calculus introduced by Vasy [24, 25] and the extensions from [2] needed
to treat the Klein–Gordon operator. In Section 4 we define the class of localization
operators that are used to define the Sobolev spaces for the Feynman propagator and we
state a slightly modified radial set estimate. We construct the Feynman propagator in
Section 5 in the case that there are no bound states and prove the Hadamard property
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in Section 6. Finally, in Section 7, we discuss the modifications of the argument that
are needed to treat the case that the limiting Hamiltonians have bound states.
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Council grant DP210103242 (JGR, MD) and National Science Foundation grant DMS-
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2. The Feynman propagator for the free Klein–Gordon equation

In this section, we consider the case V ≡ 0. This is simpler than the case of general
asymptotically static V , in that it can be treated using only the scattering calculus of
Melrose [19]. In contrast with related treatments [28] of this case, including our own
work [2] on causal propagators, here we do not use variable order weight functions for
reasons outlined in the introduction. Treating the case V ≡ 0 separately allows us to
focus on the new features of the construction, which uses microlocalizers to define the
Feynman spaces as opposed to variable order weights.

We write

P0 := □g −m2,

in particular we think of the background asymptotically Minkowski metric g as fixed;
the subscript 0 refers only to the potential V being identically zero.

Our construction of the Feynman propagator relies on a detailed understanding of the
Hamiltonian flow of P0 on the characteristic set, which we describe in Section 2.1. We
in particular identify the family Rsrc of sources of the Hamiltonian flow. In Sections 2.2
we construct microlocal cutoffs Qsrc to Rsrc, and in Section 2.3 use to impose an above
threshold decay condition on distributions in the Feynman domain, thereby making a
Fredholm problem for PV . Then in Section 2.4 we discuss the Feynman propagator as
it arises as an inverse to these Fredholm problems.

2.1. Geometry of the Hamiltonian flow. To analyze P0, we use the scattering
formalism of Melrose [19]. In particular, we work on the radial compactification

(4) X = Rn+1,
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a compact manifold whose boundary is defined by the vanishing of a function ρbase ∈
C∞(X), i.e., ρ−1

base(0) = ∂X and dρbase|∂X ̸= 0. We take

(5) ρbase = ⟨t, z⟩−1 =
(
1 + t2 + |z|2

)−1/2
≥ 1.

With coordinates t, z on Rn+1, writing

(6) gM = dt2 − dz2

we assume that our background metric g is a non-trapping Lorentzian metric and that
the difference of the components of g and gM satisfies, for all j, k ∈ {1, . . . , n+ 1},

(7) gjk − (gM)jk ∈ S−2(Rn+1) = ρ2
baseC

∞(X).

The d’Alembertian is □g = −(1/
√

|g|)∂µgµν
√

|g|∂ν , so for the Minkowski metric it is
just the free wave operator:

□gM = −∂2
t +

n∑
j=1

∂2
zj

= D2
t − ∆.

The radial compactification used here is different from the Penrose compactification
of Minkowski space; in the radial compactification, future and past causal infinity are
the limit loci of forward and backward timelike rays, respectively:

ι+ := {(t, z) : t ≥ |z|} ∩ ∂X ,

ι− := {(t, z) : − t ≥ |z|} ∩ ∂X .

Near ι+, we typically use coordinates x = 1/t, y = z/t, which are valid in any region in
which 0 ≤ x, |y| ≤ C where C > 0. In these coordinates,

ι+ = {x = 0, |y| ≤ 1}.

The full symbol of P0 is

p(t, z, τ, ζ) = g−1
(t,z) ((τ, ζ), (τ, ζ)) +m2 .

where g−1
(t,z) is the inverse of the metric g(t,z). This symbol p is an example of a scattering

symbol of order (2, 0), as we describe now.
The scattering cotangent bundle scT ∗X = X × Rn+1 is simply the compactification

of the spacetime factor of the standard phase space T ∗Rn+1, the latter written with
coordinates (t, z, τ, ζ). Its fiber compactification

(8) scT
∗
X = Rn+1

t,z × Rn+1
τ,ζ ,

on which the momentum/energy variables – the “fibers” – are also radially compactified,
is a manifold with corners, where the fiber boundary is defined by the vanishing of
ρfib ∈ C∞(Rn+1

τ,ζ ) where

(9) ρfib = ⟨τ, ζ⟩−1.
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The classical scattering symbols can then be characterized simply by

(10) scSm,r(Rn+1) = ρ−m
fib ρ

−r
baseC∞(scT

∗
X).

The quantization of these symbols yields the space of scattering pseudodifferential
operators:

(11) scΨm,r = OpL(scSm,r(X)),

and the differential operators in this class are denoted Diffm,rsc (X). Equivalently,
L ∈ Diffm,rsc (X) if an only if

(12) L =
∑

j+|α|≤m
aj,α(t, z)Dj

tD
α
z , at,α ∈ Sr(Rn+1).

Therefore P0 ∈ Diff2,0
sc , and we can apply general scattering calculus results to P0. In

particular, we can define the scattering principal symbol by the restriction

jsc,2,0(P0) := ρ2
fib · p|∂scT

∗
X ,

which we write in two components corresponding to the two boundary hypersurfaces of
scT

∗
X defined by ρfib = 0 (fiber infinity) and ρbase = 0 (spacetime or “base” infinity),

(13) ∂scT
∗
X = scT

∗
∂XX ∪ scS∗X,

where scS∗X ∼= X × ∂Rn+1 denote the sphere bundle of scT ∗X. Following Melrose [19,
Proposition 3] we write

(14) jsc,2,0(P0) =
(
σsc,2,0(P0), N̂sc,2,0(P0)

)
.

In the interior of Rn+1, σsc,2,0(P0) is identical to the standard principal symbol of P0,
while in the interior of the fiber, i.e., for finite (τ, ζ), N̂sc,2,0(P0) is the restriction of the
total symbol to the space time boundary ∂X.

Both components of jsc,2,0(P0) are functions, and the characteristic set is merely the
vanishing locus of the symbol restricted to the boundary, i.e., the union of the vanishing
loci of the components. In the case of P0 this is easy to write down:

Char(P0) = {(q, τ, ζ) : q ∈ X, gq(τ, ζ) = m2} ,

where, when q ∈ ∂X it is simply the condition τ 2 = |ζ|2 +m2, and over the interior of
X it is interpreted as the equation gq(τ, ζ) = 0 holding on points in the fiber boundary
∂Rn+1

τ,ξ .
The main object of study in these results is the Hamiltonian flow on the characteristic

set. In the scattering setting, the Hamilton vector field is also rescaled so that a well
defined flow is induced on the characteristic set in ∂scT

∗
X. Namely, we define the

scattering Hamilton vector field

(15) scHp := (ρfib/ρbase) ·Hp
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where we use the standard definition of the Hamilton vector field

(16) Hp := ∂p

∂τ
∂t + ∂p

∂ζ
∂z − ∂p

∂t
∂τ − ∂p

∂z
∂ζ .

We now discuss coordinates which are particularly convenient for the computation
of scHp and also for quantities of interest in later sections. First we note the general
fact that boundary defining functions such as ρbase and ρfib are not unique. Locally
over a boundary component • ∈ {base, fib}, any function ρ̃ satisfying 1/C < ρ̃/ρ• < C

for C > 0 is also a valid boundary defining function in that region. For us the most
convenient choices to replace ρbase and ρfib are

(17) x = (sgn t)/t, and ρ = (sgn τ)/τ,

respectively. In regions in which x, ρ < C we have coordinates

(18) x, y = z/t, ρ, µ = ζ/τ,

and we obtain the expression

(19) (1/2)scHp = −(sgn t)(sgn τ) (x∂x + (µ+ y) · ∂y) ,

where, as the reader pleases, one can think of this as a redefinition of scHp where
ρbase, ρfib are replaced by x, ρ, or one can think of the prefactor of (ρfib/τ)(x/ρbase) as
suppressed. (For a > 0 a smooth, positive function on scT

∗
X, the flow of ascHp on the

characteristic set of P0 is a smooth, non-degenerate reparametrization of the flow of
scHp and is therefore irrelevant in all statements below regarding the Hamiltonian flow.)

The radial set is the vanishing locus of the scattering Hamilton vector field in the
boundary inside the characteristic set:

R := Char(P0) ∩ scH−1
p (0) ⊂ ∂scT

∗
X .

The radial set of P0 is computed in [2, Sect. 2.5], where it is shown that it lies over
causal infinity, i.e., if π : scT

∗
X −→ X is the projection to the base, then

π(R) = ι+ ∪ ι−,

and we write

R = Rf ⊔ Rp .

for the parts of R lying over future/past causal infinity, meaning

Rf := R ∩ scT
∗
ι+X, Rp := R ∩ scT

∗
ι−X .

Both Rf and Rp consist of two connected components,

Rf = Rf
+ ⊔ Rf

− , Rp = Rp
+ ⊔ Rp

− ,

where

R•
± := R• ∩ {±τ ≥ m} .
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For example, it is easy to show that, with w = (ζ/τ) + y, then in the coordinates
x,w, ρ, µ, in the region t > 0, τ > 0,

Rf
+ = {x = 0, w = 0},

where in these coordinates

(1/2)scHp = −x∂x − w · ∂w,

showing that Rf
+ is a sink of the flow. The other three components are obtained

similarly. Finally, we denote the sources and sinks by

Rsrc := Rf
− ∪ Rp

+ ,

Rsnk := Rf
+ ∪ Rp

− .

The main theorem regarding the global structure of the Hamiltonian flow on Char(P0),
which is central to the development of the theory below is the following.

Theorem 2.1 (cf. [2, Sect. 2.5]). The sets Rsrc and Rsnk are, respectively, global sources
and sinks for the Hamiltonian flow on Char(P0).

2.2. Microlocal cutoffs. The definitions of the spaces we use to construct the Feynman
propagator rely on microlocalization to the radial set, and we review the basic features
of this briefly.

Recall from [19, Section 7], that for OpL(a) = A ∈ scΨm,r, the characteristic set
is in general the vanishing locus of jsc,m,r(A) in ∂scT

∗
X, and the elliptic set is its

complement, Ell(A) = ∂scT
∗
X \ Char(A). The operator wavefront set WF′(A) is the

essential support ess-supp(a) of the symbol.
For any compact subset K ⊂ ∂scT

∗
X and any open neighborhood U ⊂ ∂scT

∗
X of

K, a microlocal cutoff to K supported in U is a Q ∈ scΨ0,0 such that

K ⊂ Ell(Q) and WF′(Q) ⊂ U.

We often assume in addition to this that, for some open neighborhood V of K with
V ⊂ U , that

WF′(I −Q) ∩ V = ∅,

which is to say that Q is microlocally equal to the identity near K.
Microlocal elliptic regularity (cf. [28, Corollary 5.5]) states that if A ∈ scΨm,r and

B,G ∈ scΨ0,0 satisfy that WF′(G) ⊂ Ell(A) and WF′(B) ⊂ Ell(G), then for any
M,N ∈ R, there is C > 0 such that, for any s, ℓ ∈ R,

∥Bu∥s,ℓ ≤ C (∥GAu∥s−m,ℓ−r + ∥u∥−N,−M) .(20)
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Recall the scattering wavefront set of a tempered distribution u ∈ S ′(Rn+1), defined
by its complement:

WFm,r(u)c = {q ∈ ∂scT
∗
X : ∃A ∈ scΨm,r, q ∈ Ell(A), Au ∈ L2}.

Below we are interested in distributions u which lie globally in some Sobolev space
Hs,ℓ0

sc with ℓ0 < −1/2 but lie in a better space, namely one with above threshold decay,
near Rsrc. Specifically, we work with u which also satisfy, for some ℓ+ > −1/2, that
WFs,ℓ+(u) ∩ Rsrc = ∅. However, this condition is difficult to work with directly to
obtain global Fredholm estimates. We therefore fix microlocal cutoffs to Rsrc and work
with spaces with manifest dependence on those cutoffs; we then show that the solutions
obtained by that method do not depend on choices.

Microlocal cutoffs Qsrc to Rsrc are thus in particular operators in scΨ0,0 such that
Rsrc ⊂ Ell(Qsrc). To construct them is straightforward given the fact that Rsrc is a
disjoint union of smooth submanifolds which intersect the corner transversely. Indeed,
following the coordinate description above, the future radial source Rf

− is the vanishing
locus of the smooth coordinate functions x,w in the region where 0 ≤ −1/τ < C and
|ζ/τ | < C. Thus a cutoff to this set is a quantization of a symbol

(21) q1 = χ(x)χ(|w|),

where χ ∈ C∞(R) is a smooth bump function with χ(s) = 1 for |s| < δ/2 and χ(s) ≡ 0
for |s| ≥ δ. If q2 is the analogous symbol supported at the other component of the
sources, Rp

+, then we can use

Qsrc = OpL(q1) + OpL(q2).(22)

Thus we can take cutoffs Qsrc supported in arbitrarily small neighborhoods of Rsrc by
taking δ > 0 small in this definition.

2.3. Sobolev spaces for the Feynman problem. Fix a microlocalizer to the source,
Qsrc. For s, ℓ−, ℓ+ ∈ R with ℓ− < −1/2, ℓ+ > −1/2, we estimate the quantity

∥u∥s,ℓ0 + ∥Qsrcu∥s,ℓ+
in terms of appropriate norms of P0u and weaker norms of u. Note that the finiteness of
the displayed quantity implies that u ∈ Hs,ℓ0 globally, and in addition that WFs,ℓ+(u) ∩
Rsrc = ∅. In particular, as we discuss below, such a distribution u is above the threshold
weight at the radial sources.

Digressing briefly, it is convenient to introduce notation for a Hilbert space with a
norm equivalent to the sum of these norms of u just given. Indeed, for ℓ0 < ℓ+ and
A ∈ scΨ0,0 (and, in later sections, A ∈ 3scΨ0,0), we set

H
s,ℓ0,ℓ+
A := {u ∈ Hs,ℓ0

sc : Au ∈ Hs,ℓ+
sc } .(23)



FEYNMAN PROPAGATOR FOR KLEIN–GORDON 13

This is complete with respect to the norm

∥u∥2
A,s,ℓ0,ℓ+

:= ∥u∥2
s,ℓ0 + ∥Au∥2

s,ℓ+ .

We observe that

Hs,ℓ+
sc ⊂ H

s,ℓ0,ℓ+
A ⊂ Hs,ℓ0

sc .

To state the global Fredholm estimate, now assume that we are given an additional
microlocalizer to the sources Q′

src ∈ scΨ0,0 such that

(24) Rsrc ⊂ Ell(Qsrc), WF′(Qsrc) ⊂ Ell(Q′
src), WF′(Q′

src) ∩ Rsnk = ∅.

We must require, moreover, that Ell(Q′
src) contains all flow segments whose endpoints lie

in WF′(Qsrc). That is, if q ∈ WF′(Qsrc)∩Char(P0), then we must have Φs(q) ∈ Ell(Q′
src)

for all s < 0. This holds automatically, for example, if Rsrc ⊂ Ell(Qsrc) and WF′(Qsrc)
is convex under the flow on Char(P0), as we will arrange in our construction. (This
avoids the possibility of a flow line exiting both WF′(Qsrc) and Ell(Q′

src), in which case
propagation of singularities would not apply.)

With these assumptions on Qsrc, Q
′
src, we have a global estimate, which says that, for

some C > 0,

(25) ∥u∥Qsrc,s,ℓ0,ℓ+ ≤ C
(
∥P0u∥Q′

src,s−1,ℓ0+1,ℓ++1 + ∥u∥−N,−M
)
.

We briefly discuss this estimate heuristically here, but we elide its formal proof as we
prove a similar estimate below in the case V ̸≡ 0, see Lemma 5.2.

As with other estimates similar to (25), this estimate is obtained by combining three
types of estimates which hold at different parts of phase space: 1) elliptic estimates,
which are used away from the characteristic set, 2) real principal-type propagation
estimates, which are used on the characteristic set away from the radial sets, and 3)
radial points estimates, which hold near the radial set and themselves come in two
varieties, one for above threshold decay and the other for below [2, Sect. 2.7 and Sect. 7].

The above threshold radial points estimates [2, Proposition 2.11] imply that, for any
ℓ′

+ with −1/2 < ℓ′
+ < ℓ+ and any N ∈ R,

(26) ∥Qsrcu∥s,ℓ+ ≲ ∥Q′
srcP0u∥s−1,ℓ++1 + ∥Q′

srcu∥−N,ℓ′+ + ∥u∥−N,−M

This can be read as saying that u is controlled in Hs,ℓ+
sc in some neighborhood U of

Rsrc by P0u in Hs−1,ℓ++1
sc on a neighborhood U ′ of Rsrc with U ⊂ U ′, provided u lies in

an above threshold space near Rsrc. Obtaining the global estimate (25) from (26) and
the other propagation estimates is at this point a standard argument; see, among many
others, the arguments in [2, Sect. 8]. We also review this in greater detail in Section 5.

Following Vasy’s development, natural Sobolev spaces corresponding to the global
Fredholm estimates are those in which both the left and the right hand sides of (25)



14 D. BASKIN, M. DOLL, AND J. GELL-REDMAN

are finite. We thus define:

X s,ℓ0,ℓ+ := {u ∈ H
s,ℓ0,ℓ+
Qsrc : PV u ∈ H

s−1,ℓ0+1,ℓ++1
Q′

src
} , Ys,ℓ0,ℓ+ := H

s,ℓ0,ℓ+
Q′

src
.

We prefer the notation X s,ℓ0,ℓ+ to the more cumbersome X s,ℓ0,ℓ+
Qsrc,Q′

src
despite the obvious

dependence of these spaces on the choices Qsrc, Q
′
src. We prove the following:

Theorem 2.2. For s, ℓ0, ℓ+ ∈ R, ℓ0 < −1/2, ℓ+ > −1/2, and Qsrc, Q
′
src ∈ scΨ0,0

satisfying (24). Then the map

(27) P0 : X s,ℓ0,ℓ+ −→ Ys−1,ℓ0+1,ℓ++1

is Fredholm.

Proof. This proof is covered in detail in Section 5 below in the more general case of
nonzero potential V . In brief summary, the fact that the operator is bounded follows
immediately from the definitions of the spaces. Moreover, the fact that the mapping
has closed range and finite dimensional kernel follows from the estimate (25) by a
standard argument using the compactness of Hs,ℓ0,ℓ+

Qsrc in H−N,−M
sc for sufficiently large

M,N . The cokernel is then identified with the kernel of P ∗
0 with domain (Ys,ℓ0,ℓ+)′,

whose elements have above threshold decay at Rsnk. Similar estimates apply to those
distributions, giving the finite dimensionality by the same compactness argument. □

2.4. The Feynman propagator and the wavefront set condition. The fact that
the mapping (27) is in fact invertible (seen below in Section 5) provides the basis of
our definition of the Feynman propagator. However, to uniquely define the Feynman
propagator, we must ensure that the solutions u to P0u = f obtained by applying
the inverse mapping in (27) do not depend on any choices made in the construction.
Specifically, a given f lies in many spaces Ys,ℓ0,ℓ+ = H

s,ℓ0,ℓ+
Q′

src
for different values of

s, ℓ0, ℓ+ and different choices of cutoff Q′
src, and we must show that the inverse mapping

gives the same distribution independent of these choices and the choice of Qsrc in the
definition of X s,ℓ0,ℓ+ . This, and more, is summarized in the following theorem.

Theorem 2.3. Under the assumptions of Theorem 2.2, the mapping (27) is invertible.
The inverse (P0)−1

Fey is defined independently of the parameters s, ℓ0, ℓ+ and the cutoffs
Qsrc, Q

′
src in the following sense. Let u1, u2 ∈ S ′ satisfy

ui ∈ H
si,ℓ0,i,ℓ+,i

Qsrc,i
for some si, ℓ0,i, ℓ+,i ∈ R, ℓ+,i > −1/2,

with Rsrc ⊂ Ell(Qsrc,i). Then

P0u1 = P0u2 =⇒ u1 = u2.

In particular, the mapping

(28) (P0)−1
Fey : C−∞

c (X) −→ C−∞(X)
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ff+

ff−

βC−→

NP

SP

|y| = 1

Figure 1. The blow-down map βC : [X;C] → X.

is well defined and satisfies the following Hadamard property; for f ∈ C−∞
c ,

(29) WF((P0)−1
Feyf) ⊂ WF(f) ∪

⋃
s≥0

Φs (WF(f) ∩ Char(P0)) ∪ Rsnk .

where Φs is the Hamiltonian flow on ∂scT
∗
X.

3. 3sc-calculus for the Klein–Gordon operator

3.1. Basics of the 3sc-calculus. In this section, we recall the basics of the 3sc-calculus
first introduced by Vasy [24] with adaptions to treat the Klein–Gordon equation in
[2]. On the spacetime compactification X = Rn+1 discussed in Section 2.1, we set
C = {NP, SP}, where

NP = ∂X ∩ {z = 0} ∩ {t > 0} , SP = ∂X ∩ {z = 0} ∩ {t < 0} .

Thus NP ∈ ι+ and SP ∈ ι−, and due to their placement we refer to them as the north
and south poles, respectively.

To use Vasy’s three-body framework, we consider the blown-up space [X;C] with
the canonical blow-down map

βC : [X;C] → X.

The space [X;C] is a manifold with corners with three boundary hypersurfaces,

ff+ := β∗
C(NP) , ff− := β∗

C(SP) , mf := β∗
C(∂X) ,

depicted in Figure 1. The resolution [X;C] has the important property that, while the
potential V defined in (1) is not smooth on X, it is smooth on [X;C].

Our analysis below is based on the realization of PV as a 3sc-operator. To review,
the space of differential operators in the 3sc-calculus is given by

Diffm3sc(X) := Diffmsc(X) ⊗C∞(X) C∞([X;C]) .
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Thus, a differential operator L in Diffm3sc(X) is given by

L =
∑

|α|+k≤m
ak,αD

k
tD

α
z ,

where ak,α ∈ C∞([X;C]). It is easy to verify that PV ∈ Diff2
3sc(X) if V ∈ S−1(Rn

z ).
More generally, we define weighted differential operators as

Diffm,r3sc (X) := ⟨t, z⟩r Diffm3sc(X) .

The compactified 3sc-cotangent bundle is defined to be the pullback bundle
3scT

∗[X;C] := β∗
C

scT
∗
X = [X;C] × Rn+1

τ,ζ .

This is a manifold with corners with four boundary hypersurfaces,
3scT

∗
ff± [X;C] , 3scT

∗
mf [X;C] , 3scS∗[X;C] ,

with the latter being the fiber boundary [X;C] × ∂Rn+1
τ,ζ , which can be identified with

the sphere bundle of 3scT ∗[X;C]. The corresponding boundary defining functions are
denoted by

ρff± , ρmf , ρfib .

Moreover, we define the functions

ρff := ρff+ρff− , ρ∞ := ρffρmf .

Here ρ∞ = β∗
Cρbase defines the boundary of [X;C].

The space of classical 3sc-symbols is
3scSm,r(X;C) := ρ−m

fib ρ
−r
∞ C∞(3scT

∗[X;C]) .

and the 3sc-pseudodifferential operators are quantizations of such symbols,
3scΨm,r := OpL(3scSm,r) .

Let A ∈ 3scΨm,r and s, ℓ ∈ R, then ([24, Cor. 8.2])

A : Hm+s,r+ℓ
sc (X) → Hs,ℓ

sc (X)

is a bounded mapping. Below, we recall additional facts about 3sc-pseudodifferential
operators necessary for the statements and proofs of our estimates. Our first goal,
however, is to recall the principal symbol construction, which differs from that of the
scattering calculus as it includes the indicial operator.

If A = OpL(a) ∈ 3scΨ0,0, then we define the symbols over mf and fiber infinity as

N̂mf(A) = a|3scT
∗
mf [X;C] ∈ C∞(3scT

∗
mf [X;C])

and

σ3sc(A) = a|3scS∗[X;C] ∈ C∞(3scS∗[X;C]) .
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In particular, away from ff±, the symbol of a 3sc operator is equal to its symbol in the
standard scattering sense.

The indicial operator N̂ff is a family of operators parametrized by the vector bundle

W⊥ := spanR

(
dx

x2

)
⊂ scT ∗

CX

and we have the orthogonal projection

π⊥ : scT ∗
CX → W⊥ .

The space W⊥ is simply two copies of the line Rτ corresponding to the forms τdt over
NP and SP and we write W⊥

± for the restriction of W⊥ to NP and SP, respectively.
We also need the compactification of W⊥,

W⊥ ∼= {±∞} × R .

We describe below that the indicial operator is a semiclassical scattering operator with
semiclassical parameter 1/|τ | as τ → ±∞, and its semiclassical principal symbol is
equal to its total symbol’s value at τ = ±∞.

Given A ∈ 3scΨm,0, we now recall the indicial operator N̂ff(A) (cf. [24, Chap. 6],
[2, Sect. 4.2]). As the constructions at ff± are identical, we work at ff+ and write
ff = ff+. We reintroduce the ± notation when it is useful below. Each A ∈ 3scΨm,0

defines an operator Aff ∈ scΨm,0(ff) by

Aff(f) = (Au)ff ,

where u ∈ C∞(X) is any extension of f in the sense that u|ff = f . The indicial operator
on ff is then defined by

N̂ff(A)(τ0) :=
(
eiτ0/xAe−iτ0/x

)
ff
.

As an example, we recall that if PV = D2
t − (∆ + m2 + V ) and V0 ∈ S−1(Rn

z ) with
V (t, z) − V0(z) ∈ 3scΨ0,−1, then

N̂ff(PV )(τ) = τ 2 −HV0 ,

so N̂ff(PV ) is the partial Fourier transform of PV0 in the t variable.
The principal symbol of an operator A ∈ 3scΨm,r is described in detail in our previous

paper [2, Sect. 4]. It consists of two “local” components, which are rescaled restrictions of
the symbol of A to the boundary components 3scS∗[X;C] and 3scT

∗
mf [X;C], respectively.

The former is the restriction to fiber infinity, and its restriction to the interior X◦ = Rn+1

is the standard principal symbol. The rescaled restriction to 3scT
∗
mf [X;C] corresponds

with the spacetime infinity scattering principal symbol, i.e., it is the sc, as opposed to
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3sc, symbol, which is well defined on mf◦. We use ρfib = ⟨τ, ζ⟩−1 and ρbase = x = 1/t:

N̂mf,m,r(A) := ⟨τ, ζ⟩−mxra|3scT
∗
mf [X;C] ,

σ3sc,m,r(A) := ⟨τ, ζ⟩−mxra|3scS∗[X;C] ,

N̂ff,±,r(A) := N̂ff,±(xrA) .

The 3sc-principal symbol consists of these four components, and we denote the principal
symbol mapping by

j3sc,m,r : 3scΨm,r → C∞(3scT ∗
mf [X;C]) × C∞(3scS∗[X;C]) × C∞(Rτ ; scΨm,0(ff±))

A 7→
(
σ3sc,m,r(A), N̂mf,m,r(A), N̂ff,±,r(A)

)
.

The indicial operator is equal to the quantization of the restriction of the symbol of A
to the slice τ . Specifically, if a ∈ 3scSm,r satisfies, at ff = ff+,

aff := (xra)|3scT
∗
ff [X;C],

then, [2, Lemma 4.4]

(30) N̂ff,r(A)(τ) = OpL,z(aff(z, τ, ζ)).

Thus, the principal symbol satisfies the obvious matching conditions, namely that the
restriction of each component of the symbol the boundary of its domain matches the
restriction of the other components of the symbol there. Matching is the only condition
required for quantization. This is summarized in the following proposition.

Proposition 3.1 ([2, Proposition 4.6 and Proposition 4.8]). The kernel of the principal
symbol mapping is 3scΨm−1,r−1 and the image is the set of those (q1, q2, {Qτ}) such
that if q0 denotes the left reduction of Qτ , we have ⟨τ, ζ⟩−mq0 ∈ C∞(ff ×Rn+1

τ,ζ ) and the
matching conditions

q1|3scS∗
mf [X;C] = q2|3scS∗

mf [X;C] , ⟨τ, ζ⟩−mq0|3scS∗
ff [X;C] = q1|3scS∗

ff [X;C] ,

⟨τ, ζ⟩−mq0|3scT
∗
ff ∩ mf [X;C] = q1|3scT

∗
ff ∩ mf [X;C]

hold.
Moreover, j3sc is multiplicative in the sense that if A ∈ 3scΨm1,r1 and B ∈ 3scΨm2,r2,

then AB ∈ 3scΨm1+m2,r1+r2 and

j3sc,m1+m2,r1+r2(AB) = j3sc,m1,r1(A)j3sc,m2,r2(B) .

3.2. Elliptic and wavefront sets. The appropriate notions of operator wavefront
set, elliptic set, and characteristic set, are influenced by the spatially global nature
of the indicial operator. In particular, given A ∈ 3scΨm,r and τ ∈ W⊥, we have: (1)
τ0 ̸∈ 3scWF(A) if, for some ϵ > 0, the total symbol of A vanishes to all orders at the
entire lens of slices ff ×{(τ, ζ) : |τ − τ0| < ϵ} ⊂ 3scT

∗
ff [X;C], and (2) τ0 ∈ 3scEll(A) if

N̂ff,r(A)(τ0) is an invertible operator.
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Moreover, as τ → ±∞, N̂ff,r(A)(τ0) is semiclassical in h = 1/|τ |, and its principal
symbol at τ → ±∞ is the restriction of the total symbol to the “hemisphere”

UH± = 3scS∗
ff [X;C] ∩ cl({±τ > 0}).

In particular, as τ → +∞,

(31) σscl,h=1/τ (N̂ff,r(A)(1/h)) = ⟨τ, ζ⟩−maff |UH+ .

At a basic level, the principal symbol is a function on a compactification of the
compressed cotangent bundle scṪ ∗X = (scT ∗X \ scT ∗

CX) ∪W⊥, specifically on
scṪ

∗
X = (scT

∗
X \ scT

∗
CX) ∪W⊥.

The domain of principal symbol, Ċ3sc[X;C], is a subset of the boundary faces of scṪ
∗
X:

Ċ3sc[X;C] := scS∗
X\CX ∪ scT ∗

∂X\CX ∪W⊥.

To describe the operator wavefront set, we define a mapping γ3sc, which associates to
each point in the domain of the principal symbol the appropriate subset of phase space
which determines the symbolic behavior:

γ3sc : Ċ3sc[X;C] −→ P(∂3scT
∗[X;C])(32)

as

γ3sc(p) = {p} for p ∈ scS∗
X\CX ∪ scT

∗
∂X\CX ,

γ3sc(τ) = β−1
C (π⊥)−1{τ} for τ ∈ W⊥ ,

γ3sc(±∞) = UH± for ± ∞ ∈ ∂W⊥ .

In particular, γ3sc maps τ0 ∈ W⊥
+ to the entire slice ff+ ×{(τ0, ζ) : ζ ∈ Rn}. By abuse

of notation, for a set S ⊂ Ċ3sc[X;C] we write

γ3sc(S) :=
⋃
p∈S

γ3sc(p) .(33)

We used above that scS∗
X\CX ∪ scT

∗
∂X\CX is naturally identified with 3scS∗

[X;C]\ff [X;C]∪
3scT

∗
∂[X;C]\ff [X;C] via the blow down map.

For a symbol a ∈ 3scSm,r, we define the essential support of a, 3scess-supp(a) ⊂
∂3scT

∗[X;C], by declaring p ∈ 3scess-supp(a)c if and only if there exists U ⊂ 3scT
∗[X;C]

open and χ ∈ C∞
c (3scT

∗[X;C]) such that p ∈ U , χ|U ≡ 1 and χa ∈ 3scS−∞,−∞.

Definition 3.2. Let A = OpL(a) ∈ 3scΨm,r(X). The operator wavefront set
3scWF′(A) ⊂ Ċ3sc[X;C]

is defined as follows: a point p ∈ Ċ3sc[X;C] is not in the wavefront set,

p ∈ 3scWF′(A)c if and only if γ3sc(p) ∩ 3scess-supp(a) = ∅ .
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Moreover, we define

WF′
fib(A) := 3scWF′(A) ∩ scS∗

X\CX ,

WF′
mf(A) := 3scWF′(A) ∩ scT

∗
∂X\CX ,

WF′
ff(A) := 3scWF′(A) ∩W⊥ .

We can write the complements of each of the components as

WF′
fib(A)c = {α ∈ scS∗

X\CX : ∃U ⊂ scS∗
X\CX open such that α ∈ U

and a(A) vanishes to infinite order on U} ,

WF′
mf(A)c = {α ∈ scT

∗
∂X\CX : ∃U ⊂ scT

∗
∂X\CX open such that α ∈ U

and a(A) vanishes to infinite order on U} ,
WF′

ff(A)c = {τ ∈ W⊥ : ∃ ϵ > 0 such that a(A) vanishes to
infinite order on β−1

C (π⊥)−1[τ − ϵ, τ + ϵ]}
∪ {±∞ : ∃ open U ⊂ ∂3scT

∗[X;C] such that UH± ⊂ U

and a(A) vanishes to infinite order on U}.

Lemma 3.3. Let A ∈ 3scΨm1,r1, B ∈ 3scΨm2,r2, then

3scWF′(AB) ⊂ 3scWF′(A) ∩ 3scWF′(B) ,
3scWF′(A) = ∅ ⇒ A ∈ 3scΨ−∞,−∞ .

Proof. The first property follows from microlocality of the composition and the second
claim easily follows from the fact that γ3sc is surjective meaning that γ3sc(Ċ3sc[X;C]) =
∂3scT

∗[X;C]. □

Now we define the elliptic sets. Over mf and fiber infinity, the definition of ellipticity
is exactly as in the standard scattering case, i.e., non-vanishing (or, for operators acting
on sections of vector bundles, invertibility) of the principal symbol. Over ff in W⊥,
the correct notion of ellipticity is invertibility between appropriate scattering Sobolev
spaces.

To define the elliptic set, we note that the two components of the symbol σ3sc,m,r(A)
and N̂mf,m,r(A) define, by restriction, functions on scS∗

X\CX and scT
∗
∂X\CX, respectively.

Definition 3.4. Let A ∈ 3scΨm,r. The 3sc-elliptic set 3scEll(A) is

3scEll(A) = Ellfib(A) ∪ Ellmf(A) ∪ Ellff(A) ⊂ Ċ3sc[X;C] ,



FEYNMAN PROPAGATOR FOR KLEIN–GORDON 21

with

Ellfib(A) = {α ∈ scS∗
X\CX : σ3sc,m,r(A)(α) ̸= 0} ,

Ellmf(A) = {α ∈ scT
∗
∂X\CX : N̂mf,m,r(A)(α) ̸= 0} ,

while

Ellff(A) = {τ ∈ W⊥ : N̂ff,r(A)(τ) is scattering elliptic and invertible}

∪ {±∞ ∈ ∂W⊥ : σ3sc,m,r(A) is nowhere vanishing on UH±}.

Moreover, we set
3scChar(A) := Ċ3sc[X;C] \ 3scEll(A) ,(34)

the 3sc-characteristic set of A.

As expected, one obtains elliptic estimates on the elliptic set.

Proposition 3.5 (3sc-elliptic regularity, cf. [2, Prop. 4.20], [24, Lemma 9.3]). Let u ∈ S ′

and A ∈ 3scΨm,r, B,Q′ ∈ 3scΨ0,0. Assume that 3scWF′(B) ⊂ 3scEll(A) ∩ 3scEll(Q′). For
s, ℓ ∈ R, if Q′Au ∈ Hs−m,ℓ−r

sc , then Bu ∈ Hs,ℓ
sc and for any M,N ∈ R there is C > 0

such that
∥Bu∥s,ℓ ≤ C (∥Q′Au∥s−m,ℓ−r + ∥u∥−N,−M) .

In order to state a wavefront set condition for the Feynman propagator, we have
to define the 3sc-wavefront set. Our definition is very similar to the one in [24], with
the modification that we use Ċ3sc[X;C]. We note that there is a related wavefront set
defined in [25], which is slightly weaker.

Definition 3.6. Let u ∈ Ċ−∞(X). A point ζ ∈ Ċ3sc[X;C] is not in the 3sc-wavefront
set, ζ ̸∈ 3scWF(u), if there exists A ∈ 3scΨ0,0 with ζ ∈ 3scEll(A) such that Au ∈ Ċ∞(X).

For ζ ∈ scS∗
X\CX ∪ scT ∗

∂X\CX, the 3sc-wavefront set 3scWF(u) coincides with the
normal (scattering-) wavefront set WF(u). Over the poles, we have that if τ0 ∈ W⊥

with WF(u) ∩ (π⊥)−1(τ0) = ∅, then τ0 ̸∈ WFff(u), where WFff(u) := 3scWF(u) ∩W⊥.

4. 3sc-localizers

As in the scattering case in Section 2, we define a domain X for the operator PV , which
will become the range of the Feynman propagator, and this domain is again defined
using microlocalizers to the radial sources analogous with those in equation (22). In
this section we describe these microlocalizers and record several necessary modifications
of estimates in our previous work [2].
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4.1. Localization to the characteristic set. Following Vasy [24], we use the func-
tional calculus as in our previous work [2, Section 5] to adapt the microlocalizers to
the radial sets over the poles.

We first describe the functions of the operators used in the construction. Let
V0 ∈ scΨ1,−1(Rn), V ∗

0 = V0. For E > 0 sufficiently large and ψ ∈ C∞
c (R), the operator

Gψ,V0 := ψ
(
(D2

t +HV0 + E)−1PV0

)
is well-defined by the functional calculus of the (static) operator HV0 , Gψ,V0 ∈ 3scΨ0,0,
and satisfies (cf. [2, Sect. 5.1])

• N̂ff(Gψ,V0)(τ) = ψ ((τ 2 +HV0 + E)−1(τ 2 −HV0)),
• N̂ff(Gψ,V0) ∈ Ψ−∞,0,0

scl,sc .

In [2], we only used Gψ,V0 near the poles, now we need a global operator Gψ that
coincides with Gψ,V+ near NP and Gψ,V− near SP.

Definition 4.1. Let V ∈ ρmf
3scΨ1,0 and r ∈ (0,∞). We say that V is asymptotically

static of order r at C, if there exist V± ∈ S−1
cl (Rn

z ) and χ± ∈ C∞
c (X) such that

(1) χ+(NP) = 1 and χ−(SP) = 1,
(2) χ± · (V − V±) ∈ 3scΨ1,−r.

We note that if V is asymptotically static of order r > 0, then the static parts V±
are uniquely determined.

For the definition of Gψ, we choose χ± as in the previous definition and with the
additional property that χ+ = 0 in a neighborhood of SP and χ− = 0 in a neighborhood
of NP. We set

Gψ := χ+Gψ,V+ + χ−Gψ,V− + (1 − χ+ − χ−)Gψ,0 .

We have that Gψ ∈ 3scΨ0,0 and since by [2, Eq. (5.8) and Eq. (5.9)] the mf and
fib-symbols of Gψ,V0 are independent of V0, we have that Gψ is defined independently
of the choice of χ± up to 3scΨ−1,−1.

We can estimate Bu by BGψu and G′PV u if G′ is elliptic on the wavefront set of B:

Proposition 4.2 (cf. [2, Proposition 5.14]). Let V ∈ ρmf
3scΨ1,0 be asymptotically static

of order r. Let φ ∈ C∞
c (R) with φ|(−ε,ε) ≡ 1 for some ε > 0, B,G′, B′ ∈ 3scΨ0,0 such

that
3scWF′(B) ⊂ 3scEll(G′) ∩ 3scEll(B′) .

For all M,N ∈ N and s, ℓ ∈ R there exists C > 0 such that for all u ∈ H−N,−M
sc ,

∥Bu∥s,ℓ ≤ C (∥BGφu∥s,ℓ + ∥G′PV u∥s−2,ℓ + ∥B′u∥s−1,ℓ−r + ∥u∥−N,−M) ,

provided that the right hand side is finite.
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Proof. Recall [2, Proposition 5.14] that we have Eψ,V0 ∈ 3scΨ−2,0 which satisfies
(Id −Gψ,V0) = Eψ,V0PV0 . We set

Ẽ = χ+Eψ,V+ + χ−Eψ,V−

and

R = χ+Eψ,V+(PV+ − PV ) + χ−Eψ,V−(PV− − PV ) ∈ 3scΨ−1,−r

Therefore, we have that

Id = Gψ + ẼPV +R + (1 − χ+ − χ−)(Id −Gψ,0)

Since 3scWF′(B) ⊂ 3scEll(G′), we obtain

∥BẼPV u∥s,ℓ ≲ ∥G′PV u∥s−2,ℓ + ∥u∥−N,−M ,

while 3scWF′(B) ⊂ 3scEll(B′) implies

∥BRu∥s,ℓ ≲ ∥B′u∥s−1,ℓ−r + ∥u∥−N,−M ,

and, since PV is elliptic on the microsupport of (1 − χ+ − χ−)(Id −Gψ,0) ∈ scΨ0,0,

∥B(1 − χ+ − χ−)(Id −Gψ,0)u∥s,ℓ ≲ ∥G′PV u∥s−2,ℓ + ∥u∥−N,−M .

Combining these estimates gives the claimed inequality. □

Moreover, we have an elliptic estimate for BGφu by QGψu given that Q is elliptic
on the wavefront set of BGφ and the support of φ is contained in the set {ψ = 1}.

Proposition 4.3. Let B,Q ∈ 3scΨm,r and φ, ψ ∈ C∞
c (R) with φψ = φ and φ(0) = 1.

If 3scWF′(BGφ) ⊂ 3scEll(Q), then for any N,M ∈ N there exists C > 0 such that for
u ∈ H−N,−M

sc ,

∥BGφu∥ ≤ C (∥QGψu∥ + ∥u∥−N,−M) .

Proof. Let χ̃± ∈ C∞
c (X) with supp χ̃± ⊂ {χ± ≡ 1}, χ̃+ ≡ 1 in a small neighborhood of

NP, and χ̃− ≡ 1 in a small neighborhood of SP. Write B = Bχ̃++Bχ̃−+B(1−χ̃+−χ̃−).
We have that

Bχ̃+Gφ = Bχ̃+Gφ,V+ = Bχ̃+Gφ,V+Gψ,V+ .

On the support of Bχ̃+Gφ,V+ , Gψ,V+ is equal to to Gψ modulo scΨ−∞,−∞ and together
with elliptic regularity, we have Then, we have that

∥Bχ̃+Gφu∥ ≲ ∥QGψu∥ + ∥u∥−N,−M .

Similarly, we can estimate Bχ̃−Gφu. for the interior term, we notice that B(1 − χ̃+ −
χ̃−)Gφ is microsupported in the elliptic set of QGψ and therefore we can apply elliptic
regularity directly. □
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In order to localize to slices {τ = τ0}, we want to quantize symbols whose restrictions
to C are purely functions of τ . For this, we denote the fiber equator by

fibeq := ∂Rn+1
τ,ζ ∩ {τ = τ0} .

Note that this set is independent of the choice of τ0.
We recall from [2, Proposition 5.15] that if q ∈ C∞([scT ∗

X; fibeq]), using ρ = 1/τ as
a rescaling function,

OpL(x−ℓρ−sq)Gψ ∈ 3scΨs,ℓ

for any ψ ∈ C∞
c and s, ℓ ∈ R.

We have the following variant of [24, Lemma 13.5]:

Lemma 4.4. Assume that q|NP = f, where f ∈ C∞(W⊥), i.e., qNP depends only on τ .
The operator wavefront set of Q := OpL(x−ℓρ−sq)Gψ satisfies

WF′
ff(Q) ⊂ ess-supp(f) ∩ WF′

ff(Gψ) ,

WF′
mf(Q) ⊂ ess-suppmf

(
qψ

(
τ 2 − (|ζ|2 +m2)
τ 2 + |ζ|2 +m2 + E

))
,

WF′
fib(Q) ⊂ ess-suppfib

(
qψ

(
τ 2 − |ζ|2

τ 2 + |ζ|2

))
.

4.2. Localization to the radial set. The radial set is naturally defined on scT
∗
X,

but the natural phase space for 3sc-operators is Ċ3sc[X;C]. Over the poles, we therefore
define the 3sc-radial set as subsets of W⊥, namely

Rff, src := (NP × {−m}) ∪ (SP × {+m}) ⊂ W⊥ ,

Rff, snk := (NP × {+m}) ∪ (SP × {−m}) ⊂ W⊥ .

The entire 3sc-radial set is given by
3scR :=

(
R ∩

(
scS∗

X\CX ∪ scT ∗
∂X\CX

))
∪ (C × {±m})

and
3scRsrc :=

(
Rsrc ∩

(
scS∗

X\CX ∪ scT ∗
∂X\CX

))
∪ Rff,src ,

3scRsnk :=
(
Rsnk ∩

(
scS∗

X\CX ∪ scT ∗
∂X\CX

))
∪ Rff,snk .

We have that 3scR = 3scRsrc ⊔ 3scRsnk and 3scR• ⊂ γ3sc(R•) for • ∈ {src, snk}.
We note that localizing to the characteristic set over the poles is nuanced: if

A ∈ 3scΨ0,0 is elliptic at Rff,src, then there exists a neighborhood U ⊂ ∂X of C such
that A is elliptic at scT ∗

U\CX ∩ Rsrc. We therefore must further localize and employ
a localizer of the form QGψ for appropriate ψ and Q = OpL(q), with the symbol q
restricting over NP to a function of τ .
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Definition 4.5. Let δ > 0. We call Q ∈ 3scΨ0,0 a δ-localizer to 3scRsrc if

(1) Q is microlocally the identity near the sources,
3scWF′(Id −Q) ∩ 3scRsrc = ∅ ,

(2) for all φ ∈ C∞
c (R) with suppφ ⊂ (−δ, δ) we have

3scWF′(QGφ) ∩ 3scRsnk = ∅ .

We denote the set of all δ-localizers to 3scRsrc by 3scΨsrc,δ. We also define 3scΨsnk,δ,
where the roles of Rsrc and Rsnk are interchanged.

Lemma 4.6. The set 3scΨsrc,δ is non-empty for all δ > 0.

Proof. Let ε > 0 small and choose f ∈ C∞
c (W⊥) such that f(+∞, τ) = f(−∞,−τ) = 0

and f(+∞,−τ) = f(−∞, τ) = 1 for τ ∈ (m − ε,m + ε). We choose a function q ∈
C∞([scT ∗

X; fibeq]) such that q|C(±∞, τ, ζ) = f(±∞, τ) and q = 1 in a neighborhood
of Rsrc and q = 0 in a neighborhood of Rsnk.

Fix ψ ∈ C∞
c (R) with ψ(s) ≡ 1 for s ∈ (−δ, δ) and ψ(s) ≡ 0 for |s| > 2δ. By

[2, Proposition 5.15], we have that

Q := OpL(q)Gψ + (Id −Gψ)

is a 3sc-operator of order (0, 0).
To show that 3scWF′(Id −Q) ∩ 3scRsrc = ∅, we use that

Id −Q = OpL(1 − q)Gψ .

Since q = 1 in a neighborhood of Rsrc and f = 1 near τ = −m, we have that
3scWF′(Id −Q) ∩ 3scRsrc = ∅ by Lemma 4.4.

For φ ∈ C∞
c with suppφ ⊂ (−δ, δ), we calculate

QGφ = OpL(q)Gφ

and consequently,

WF′
ff(QGφ) ⊂ ess-supp(f) ∩ WF′

ff(Gφ) .

Since f(+∞,m) = 0 it then follows that m ̸∈ WF′
ff(QGφ).

The same arguments apply to SP and therefore Q ∈ 3scΨsrc,δ. □

4.3. Propagation estimates.

Definition 4.7. Let U, V,W ⊂ Ċ3sc[X;C]. We say that U is (backward) controlled by
V through W if for all α ∈ Char(P0) that are incoming to U , in sense that

πX,τ (α) ∈ πX,τ (γ3sc(U) ∩ Char(P0)) ,
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there exists sα < 0 such that

exp(sαscHp)(α) ∈ V

and for all s ∈ [sα, 0],

exp(sscHp)(α) ∈ W .

We recall from [2] the various propagation estimates. We assume throughout that
V ∈ ρmf

3scΨ1,0 is asymptotically static of order r ≥ 1 and

V − V ∗ ∈ 3scΨ0,−2 .

Moreover, we assume that HV± have purely absolutely continuous spectrum in [m2,∞).
This condition is guaranteed on (m2,∞) by well-known results in scattering theory; it
is really only an assumption at the bottom of the continuous spectrum m2.

Proposition 4.8 (Regular propagation estimate [2, Proposition 6.2]). Let δ > 0
sufficiently small, φ, ψ1, ψ2 ∈ C∞

c (R) with suppφ ⊂ (−δ, δ) and ψj|(−δ,δ) ≡ 1, and
B,E,G,G′, B′ ∈ 3scΨ0,0 such that

(1) WF′
ff(E) = ∅,

(2) scHp(α) ̸= 0 for all α ∈ γ3sc(3scEll(G)),
(3) 3scWF′(BGφ) is controlled by 3scEll(E) through 3scEll(G),
(4) 3scWF′(B) ⊂ 3scEll(G′) ∩ 3scEll(B′).

and ψ1, ψ2 ∈ C∞
c (R) with ψj|(−δ,δ) ≡ 1.

For all M,N, s, ℓ ∈ R and u ∈ H−N,−M
sc with EGψ1u ∈ Hs,ℓ

sc , GGψ2PV u ∈ Hs−1,ℓ+1
sc ,

G′PV u ∈ Hs−2,ℓ
sc , and B′u ∈ Hs−1,ℓ−r

sc , it follows that Bu ∈ Hs,ℓ
sc and

∥Bu∥s,ℓ ≤ C
(
∥EGψ1u∥s,ℓ + ∥GGψ2PV u∥s−1,ℓ+1 + ∥G′PV u∥s−2,ℓ + ∥B′u∥s−1,ℓ−r

+ ∥u∥−N,−M
)
.

Near the radial sets 3scR, we have two different estimates, depending on whether
ℓ > 1/2 or ℓ < −1/2:

Proposition 4.9 (Above threshold radial point estimate [2, Proposition 7.1]). Let
δ > 0 sufficiently small, φ, ψ1, ψ2 ∈ C∞

c (R) with suppφ ⊂ (−δ, δ) and ψj|(−δ,δ) ≡ 1,
τ0 ∈ {±m} ⊂ W⊥, and B,B1, G,G

′, B′ ∈ 3scΨ0,0 such that

(1) 3scWF′(BGφ) is contained in a sufficiently small neighborhood of τ0 ∈ Ċ3sc[X;C],
(2) τ0 ∈ Ellff(B) ∩ Ellff(B1),
(3) 3scWF′(BGφ) ⊂ 3scEll(B1) ∩ 3scEll(G),
(4) 3scWF′(B) ⊂ 3scEll(B′) ∩ 3scEll(G′).
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For all M,N, s, s′, ℓ, ℓ′ ∈ R with ℓ > ℓ′ > −1/2, s > s′, and u ∈ H−N,−M
sc with

B1Gϕu ∈ Hs′,ℓ′
sc , GGψPV u ∈ Hs−1,ℓ+1

sc , G′PV u ∈ Hs−2,ℓ
sc , and B′u ∈ Hs−1,ℓ−r

sc , it follows
that Bu ∈ Hs,ℓ

sc and

∥Bu∥s,ℓ ≤ C
(
∥B1Gψ1u∥s′,ℓ′ + ∥GGψ2PV u∥s−1,ℓ+1 + ∥G′PV u∥s−2,ℓ + ∥B′u∥s−1,ℓ−r

+ ∥u∥−N,−M
)
.

Proposition 4.10 (Below threshold radial point estimate [2, Proposition 7.2]). Let
δ > 0 sufficiently small, φ, ψ1, ψ2 ∈ C∞

c (R) with suppφ ⊂ (−δ, δ) and ψj|(−δ,δ) ≡ 1, and
B,E,G,G′, B′ ∈ 3scΨ0,0 such that

(1) 3scWF′
ff(E) = ∅,

(2) 3scWF′(BGφ) ∪ 3scEll(E) ⊂ 3scEll(G),
(3) 3scEll(G) ∩ 3scRsrc = ∅,
(4) 3scWF′(B) ⊂ 3scEll(B′) ∩ 3scEll(G′),
(5) 3scWF′(BGφ) \ 3scRsnk is backward controlled by 3scEll(E) through 3scEll(G).

For all M,N, s, ℓ ∈ R with ℓ < −1/2 and u ∈ H−N,−M
sc with EGψ1u ∈ Hs,ℓ

sc ,
GGψ2PV u ∈ Hs−1,ℓ+1

sc , G′PV u ∈ Hs−2,ℓ
sc , and B′u ∈ Hs−1,ℓ−r

sc , it follows that Bu ∈ Hs,ℓ
sc

and

∥Bu∥s,ℓ ≤ C
(
∥EGψ1u∥s,ℓ + ∥GGψ2PV u∥s−1,ℓ+1 + ∥G′PV u∥s−2,ℓ + ∥B′u∥s−1,ℓ−r

+ ∥u∥−N,−M
)
.

The same statement holds if the roles of 3scRsrc and 3scRsnk are interchanged and
forward control is used instead of backward control.

5. Construction of the Feynman propagator

We now construct the Feynman propagator. We follow the general structure of the
construction in Section 2, which is to say that we begin with the construction of a
Fredholm problem for PV . The spaces involved in this construction are similar to those
in Section 2 in the sense that they have an overall regularity and below threshold
weight with the assumption of above threshold weight imposed at the radial sources
using a microlocalizer, the primary difference here being that we must now use the
3sc-microlocalizers discussed above.

We choose δ > 0, Qsrc ∈ 3scΨsrc,δ, Q′
src ∈ 3scΨsrc,2δ and cutoff functions ϕ, ψ ∈ C∞

c (R)
be bump functions supported near 0 with suppϕ ⊂ (−δ, δ), suppψ ⊂ (−2δ, 2δ), and
ψ(s) ≡ 1 on (−δ, δ). (3scΨsrc,δ is from Definition 4.5.) We assume

3scWF′(QsrcGϕ) ⊂ 3scEll(Q′
src).

Moreover, we require, as in the scattering case in Section 2.2, that the segments of
broken bicharacteristic rays with endpoints in 3scWF′(QsrcGϕ) lie in 3scEll(Q′

src).
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We additionally choose a Bsrc ∈ 3scΨ0,0 with Rff,src ⊂ Ellff(Bsrc). For s, ℓ0, ℓ+ ∈ R,
we define the Feynman–Sobolev spaces as

Ys,ℓ0,ℓ+ :=
{
v ∈ Hs−1,ℓ0+1

sc : Q′
srcGψv ∈ Hs−1,ℓ++1

sc , Bsrcv ∈ Hs−2,ℓ+
sc

}
,

X s,ℓ0,ℓ+ :=
{
u ∈ Hs,ℓ0

sc : QsrcGϕu ∈ Hs,ℓ+
sc , PV u ∈ Ys,ℓ0,ℓ+

}
with norms

∥v∥2
Ys,ℓ0,ℓ+ := ∥v∥2

s−1,ℓ0+1 + ∥Q′
srcGψv∥2

s−1,ℓ++1 + ∥Bsrcv∥2
s−2,ℓ+ ,

∥u∥2
X s,ℓ0,ℓ+ := ∥u∥2

s,ℓ0 + ∥QsrcGϕ∥2
s,ℓ+ + ∥PV u∥2

Ys,ℓ0,ℓ+ .

In particular, this means that u is supposed to have above threshold regularity
at Rsrc and below threshold regularity at Rsnk. We have to include the Bsrcv term
in the Ys,ℓ0,ℓ+ space because the above threshold radial set estimate near the poles
requires control of BsrcPV u with a 3sc-elliptic operator and the operator QsrcGψ is not
3sc-elliptic there. If we interchange the roles of Rsrc and Rsnk, then the resulting spaces
give the Fredholm problem associated to the anti-Feynman propagator.

As in [2] we have two results, which differ by the assumption on bound states and
the decay of the non-static part of the potential. We treat the case where there are
no bound states for the limiting Hamiltonians in this section and the case with bound
states in Section 7.

Theorem 5.1. Let s, ℓ0, ℓ+, r ∈ R with ℓ0 < −1/2 < ℓ+ < 1/2, and r ≥ max{1, ℓ+−ℓ0}.
Let V ∈ ρmf

3scΨ1,0 be an asymptotically static perturbation of order r and the limiting
Hamiltonians HV± = ∆ + m2 + V± have purely absolutely continuous spectrum near
[m2,∞), have no bound states, and the leading part of V is self-adjoint in the sense
that

V − V ∗ ∈ 3scΨ0,−2 ,

then the map

PV : X s,ℓ0,ℓ+ → Ys,ℓ0,ℓ+(35)

is Fredholm.
If we assume that V ∈ ρmf Diff1

3sc and V = V ∗, then PV is invertible.

To prove that PV is a Fredholm operator, we have to show that PV : X s,ℓ0,ℓ+ → Ys,ℓ0,ℓ+

has finite dimensional kernel and cokernel.

Lemma 5.2. Let s, ℓ0, ℓ+, r ∈ R with ℓ0 < −1/2 < ℓ+, and r ≥ max{1, ℓ+ − ℓ0}.
Assume that V ∈ ρmf

3scΨ1,0 satisfies the assumptions of Theorem 5.1. There exists
C > 0 such that for all u ∈ Hs−1,ℓ0−1

sc ∩ X s,ℓ0,ℓ+,

∥u∥X s,ℓ0,ℓ+ ≤ C
(
∥PV u∥Ys,ℓ0,ℓ+ + ∥u∥s−1,ℓ0−1

)
.
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In particular, kerX s,ℓ0,ℓ+ PV is finite-dimensional and has closed range.

Proof. The claimed global estimate follows, using a interpolation argument as in
[2, Eq. (2.39)] applied to ∥QsrcGϕu∥s,ℓ0 , from the two estimates

∥u∥s,ℓ0 ≲ ∥QsrcGϕu∥s,ℓ0 + ∥PV u∥s−1,ℓ0+1 + ∥u∥s−1,ℓ0−1

∥QsrcGϕu∥s,ℓ+ ≲ ∥BsrcPV u∥s−2,ℓ+ + ∥Q′
srcGψPV u∥s−1,ℓ++1

+ ∥u∥s,ℓ0 .

The first inequality is the result of using a microlocal partition of unity together
with elliptic estimates, propagation estimates and below threshold estimates. Near the
poles, we use Proposition 3.5, Proposition 4.8, and Proposition 4.10 and away from the
poles, we can use the estimates from the scattering calculus as in Section 2.

More precisely, we take an open cover O1, O2, O3, O4 of the compressed cotangent
bundle scṪX similar as in [2, p. 83] such that

(1) 3scWF′(QsrcGϕ) ⊂ O1,
(2) Rsnk ⊂ O2 ⊂ 3scWF′(Id −Qsrc),
(3) 3scChar(PV ) ⊂ O1 ∪O2 ∪O3,
(4) O3 ∩ 3scChar(PV ) is controlled along scHp by O1,
(5) (O2 ∩ 3scChar(PV )) \ Rsnk is controlled along scHp by O3, and
(6) O4 ⊂ 3scEll(PV ).

The proof that that such a cover exists is similar to the case in [2].
We also choose a collection Q2, Q3, Q4 ∈ 3scΨ0,0 with

3scWF′(QiGϕ) ⊂ Oi

and

Ċ3sc[X;C] ⊂ 3scEll(Qsrc) ∪
4⋃
i=2

3scEll(Qi) .

We have the estimate

∥u∥s,ℓ0 ≲ ∥Qsrcu∥s,ℓ0 + ∥Q2u∥s,ℓ0 + ∥Q3u∥s,ℓ0 + ∥Q4u∥s,ℓ0 + ∥u∥s−1,ℓ0−1 .

By Proposition 4.2, we have

∥Qsrcu∥s,ℓ0 ≲ ∥QsrcGϕu∥s,ℓ0 + ∥PV u∥s−1,ℓ0+1 + ∥u∥s−1,ℓ0−1 .

Using the propagation estimates, Proposition 4.8 and [2, Proposition 2.6], we can
estimate Q3u by the localizer near the sources, Qsrcu, and PV u. More precisely, we
have

∥Q3u∥s,ℓ0 ≲ ∥Qsrcu∥s,ℓ0 + ∥PV u∥s−1,ℓ0+1 + ∥u∥s−1,ℓ0−1 .
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The below threshold estimates, Proposition 4.10 and [2, Proposition 2.13], imply

∥Q2u∥s,ℓ0 ≲ ∥Q3u∥s,ℓ0 + ∥PV u∥s−1,ℓ0+1 + ∥u∥s−1,ℓ0−1 .

Lastly, we use the elliptic estimate [2, Proposition 2.2] to bound

∥Q4u∥s,ℓ0 ≲ ∥PV u∥s−2,ℓ0 + ∥u∥−N,−M ≤ ∥PV u∥s−1,ℓ0+1 + ∥u∥s−1,ℓ0−1 .

Putting the estimates together, we obtain

∥u∥s,ℓ0 ≲ ∥QsrcGϕu∥s,ℓ0 + ∥PV u∥s−1,ℓ0+1 + ∥u∥s−1,ℓ0−1 ,

which is the first inequality.
The second inequality is a “global” above threshold estimate. As a consequence of

Proposition 4.9 with s′ = s− 1, −N = s− 1, and −M = ℓ0 and using that ℓ+ − r ≤ ℓ0,
we obtain

(36)
∥QsrcGϕu∥s,ℓ+ ≲ ∥B1Gψu∥s−1,ℓ′ + ∥Q′

srcGψPV u∥s−1,ℓ++1 + ∥BsrcPV u∥s−2,ℓ+

+ ∥u∥s−1,ℓ0 ,

where ℓ′ ∈ (−1/2, ℓ+) and for some B1 ∈ 3scΨ0,0 that satisfies 3scWF′(QsrcGϕ) ⊂
3scEll(B1) and 3scWF′(B1Gψ) ⊂ 3scEll(Bsrc) ∪ 3scEll(Q′

srcGψ).
To remove the B1Gψ term, we claim that

(37)
∥B1Gψu∥s−1,ℓ′ ≲ ∥QsrcGϕu∥s−1,ℓ′ + ∥BsrcPV u∥s−3,ℓ′ + ∥Q′

srcGψPV u∥s−2,ℓ′+1

+ ∥u∥s−2,ℓ0 .

Combining (36) and (37), we arrive at the estimate

∥QsrcGϕu∥s,ℓ+ ≲ ∥BsrcPV u∥s−2,ℓ+ + ∥Q′
srcGψPV u∥s−1,ℓ++1

+ ∥QsrcGϕu∥s−1,ℓ′ + ∥u∥s,ℓ0 .

Using the interpolation inequality [2, Eq. (2.39)], we can absorb ∥QsrcGϕu∥s−1,ℓ′ into
the left hand side.

It remains to prove (37). From Proposition 4.2 we obtain

∥B1Gψu∥s−1,ℓ′ ≲ ∥B1Gφu∥s−1,ℓ′ + ∥BsrcPV u∥s−3,ℓ′ + ∥u∥s−1,ℓ0 ,

where φ ∈ C∞
c (R) with φϕ = φ and φ ≡ 1 in a small neighborhood of 0. We choose

Q̃ ∈ 3scΨ0,0 such that 3scWF′(Id −Q̃) ∩ 3scRsrc = ∅ and 3scWF′(Q̃Gφ) ⊂ 3scEll(Qsrc).
Using Proposition 4.3, we further estimate

∥B1Gφu∥s−1,ℓ′ ≲ ∥B1(Id −Q̃)Gφu∥s−1,ℓ′ + ∥QsrcGϕu∥s−1,ℓ′

+ ∥u∥s−1,ℓ0 .
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Since B1(Id −Q̃)Gφ is localized away from the radial sources and controlled by QsrcGϕ,
we obtain using Proposition 4.8,

∥B1(Id −Q̃)Gφu∥s−1,ℓ′ ≲ ∥QsrcGϕu∥s−1,ℓ′ + ∥Q′
srcGψPV u∥s−2,ℓ′+1

+ ∥BsrcPV ∥s−3,ℓ′ + ∥u∥s−2,ℓ0 .

Putting all of these estimates together, we arrive at (37).
The conclusion that kerX s,ℓ0,ℓ+ PV is finite-dimensional and that PV has closed range

follow from a standard argument (cf. [27]) because Hs−1,ℓ0−1
sc → X s,ℓ0,ℓ+ is compact. □

To complete the proof of Theorem 5.1, we have to show that the cokernel of PV :
X s,ℓ0,ℓ+ → Ys,ℓ0,ℓ+ is finite-dimensional as well. The cokernel is given by

coker(PV ) =
{
v ∈ (Ys,ℓ0,ℓ+)′ : ⟨PV u, v⟩ = 0 for all u ∈ X s,ℓ0,ℓ+

}
,

which is equal to ker(Ys,ℓ0,ℓ+ )′ P ∗
V since PV has closed range.

Lemma 5.3. There exists Q̃ ∈ 3scΨsnk,δ such that for all ϕ′ ∈ C∞
c (R) with suppϕ′ ⊂

(−δ, δ) and u ∈ (Ys,ℓ0,ℓ+)′, we have Q̃Gϕ′u ∈ H
1−s,ℓ′+
sc , where ℓ′

+ = min{−ℓ0 − 1,−ℓ+}.

Proof. Since Q′
src ∈ 3scΨsrc,δ, we can construct the following operator Q̃:

We choose f ∈ C∞
c (W⊥) such that

f |WF′
ff(Q′

src)c = 0 ,
f |W⊥

+
(τ) = f |W⊥

−
(−τ) = 1

for τ ∈ (m − ε,m + ε) and ε > 0 sufficiently small. Moreover, we choose q̃ ∈
C∞([scT ∗

X; fibeq]) such that q̃ = 1 near Rsnk, q̃ = 0 on 3scWF′(Qsrc) \ W⊥ and
q̃|C(τ, ζ) = f(τ).

We set

Q̃ := OpL(q̃)Gφ + (Id −Gφ) ,

which is an element in 3scΨsnk,δ by construction.

To show that Q̃Gϕ′ maps (Ys,ℓ0,ℓ+)′ to H1−s,ℓ′+
sc , we show that the adjoint Gϕ′Q̃∗ maps

H
s−1,−ℓ′+
sc to Ys,ℓ0,ℓ+ . Let v ∈ H

s−1,−ℓ′+
sc , we have to show that

Gϕ′Q̃∗v ∈ Hs−1,ℓ0+1
sc ,

Q′
srcGψGϕ′Q̃∗v ∈ Hs−1,ℓ++1

sc ,

BsrcGϕ′Q̃∗v ∈ Hs−2,ℓ+
sc .

Since −ℓ′
+ ≥ ℓ0 + 1 and −ℓ′

+ ≥ ℓ+, the first and the third property are trivially satisfied.
Finally, we have that

3scWF′(Q̃Gϕ′) ∩ 3scWF′(Q′
srcGψ) = ∅
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by construction of Q̃ and therefore Q′
srcGψGϕ′Q̃∗ is regularizing. □

Lemma 5.4. Let s, ℓ0, ℓ+, r ∈ R with ℓ0 < −1/2 < ℓ+ < 1/2, and r ≥ max{1, ℓ+ − ℓ0}.
If V ∈ ρmf

3scΨ1,0 is an admissible asymptotically static perturbation of order r, then
the kernel of P ∗

V , ker(Ys,ℓ0,ℓ+ )′ P ∗
V , is finite-dimensional.

Proof. Set ℓ′
+ := min{−ℓ0 − 1,−ℓ+} and ℓ′

0 = −ℓ+ − 1. By assumption, ℓ′
+ > −1/2

and ℓ′
0 < −1/2 and we note that r ≥ ℓ′

+ − ℓ′
0. Therefore, s′ = 1 − s, ℓ′

0, ℓ
′
+, and r satisfy

the assumptions of Lemma 5.2.
We choose Q̃ ∈ 3scΨsnk,δ as in the previous lemma, Q̃′ ∈ 3scΨsnk,2δ with 3scWF′(Q̃) ⊂

3scEll(Q̃′) and as in Lemma 5.2. Moreover, we choose a B̃snk ∈ 3scΨ0,0 with Rff,snk ⊂
3scEll(B̃snk). We set

Ỹ :=
{
v ∈ H−s,ℓ′0+1

sc : Q̃′Gψv ∈ H
−s,ℓ′++1
sc , B̃snkv ∈ H

−s−1,−ℓ′+
sc

}
,

X̃ :=
{
u ∈ H1−s,ℓ′0sc : Q̃Gϕu ∈ H

1−s,ℓ′+
sc , P ∗

V u ∈ Ỹ
}

We claim that ker(Ys,ℓ0,ℓ+ )′ P ∗
V ⊂ X̃ . We have to show that for u ∈ (Ys,ℓ0,ℓ+)′ with

P ∗
V u = 0, we have that

u ∈ H1−s,ℓ′0sc ,

Q̃Gϕu ∈ H
1−s,ℓ′+
sc .

The first inclusion follows by duality from H
s−1,−ℓ′0sc = Hs−1,ℓ++1

sc ⊂ Ys,ℓ0,ℓ+ and the
second follows from the previous lemma.

The claim now follows from Lemma 5.2 with P ∗
V : X̃ → Ỹ and interchanging the

roles of Rsrc and Rsnk. □

If PV u ∈ Ċ∞(X), then we have the following regularity result, which is an immediate
consequence of the estimates in Section 4.3.

Lemma 5.5. Let s, ℓ0, ℓ+, r ∈ R with ℓ0 < −1/2 < ℓ+, and r ≥ max{1, ℓ+ − ℓ0}. Let
V ∈ ρmf

3scΨ1,0(X) be an admissible asymptotically static perturbation of order r and
assume that HV± have no bound states. If u ∈ X s,ℓ0,ℓ+ and PV u ∈ Ċ∞(X), then for any
δ > 0,

u ∈ H∞,−1/2−δ
sc , and Au ∈ H∞,−1/2−δ+r

sc

provided that A ∈ 3scΨ0,0 satisfies 3scWF′(A) ∩ 3scRsnk = ∅.

The previous lemma states that if PV u ∈ Ċ∞, then u is above threshold except at
the radial sinks. If we assume that PV u = 0, then u is above threshold everywhere.
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Proposition 5.6. Let s, ℓ0, ℓ+, r ∈ R with ℓ0 < −1/2 < ℓ+, and r ≥ max{1, ℓ+ − ℓ0}.
Assume that V is an admissible asymptotically static perturbation of order r, and in
addition that V ∈ ρmf Diff1

3sc and V = V ∗. Then, for all δ > 0,

kerX s,ℓ0,ℓ+ PV ⊂ H∞,−1/2−δ+r
sc .

Proof. We employ essentially the same argument as the one provided by Vasy [24,
Proposition 17.8] (see also [29, Proposition 7]). For α ∈ (−1/2, 0) and ε > 0, we
introduce the family of cut-off functions χε(x) given by

χε(x) = ε−2α−1
∫ x/ε

0
φ(s)2s−2α−2 ds ,

where φ ∈ C∞(R) is non-negative, φ ≡ 0 on (−∞, 1], and φ ≡ 1 on [2,∞). For
fixed ε > 0, χε is compactly supported in the interior of M and hence an element of
scΨ0,−∞(X). As a family in ε ∈ (0, 1), however, χε is not uniformly bounded in any
symbol space. On the other hand, its commutator with x2∂x is uniformly bounded in
scΨ0,2α, as

[x2∂x, χε] = x2∂xχε(x) = x−2αφ (x/ε)2 .

For u ∈ kerX s,ℓ0,ℓ+ PV , we consider the pairing

0 = i (⟨χεu, PV u⟩ − ⟨PV u, χεu⟩) = i⟨[PV , χε]u, u⟩ ,

where the second equality follows from P ∗
V = PV and the fact that χε is compactly

supported.
Since V ∈ ρmf Diff1

3sc, we have that [V, χε] = φ(x/ε)f(x, z) for some f ∈ 3scS0.
Therefore, we can write

i[PV , χε] = 2x−2αφ(x/ε)2(x2Dx) + Fε ,

where Fε ∈ 3scΨ0,2α−1 is uniformly bounded.
We now work in t ≫ 0, as the argument in t ≪ 0 is similar with a sign change.

Choose b ∈ C∞(W⊥) such that b ≡ 1 for τ > m/2 and b ≡ 0 for τ < m/4 and set

B := OpL(τ 1/2b(τ))Gψ ,

E := (x2Dx)(Id −G2
ψ) + OpL(τ(1 − b(τ)2))G2

ψ ,

so that

x2Dx = B∗B + E +R

with R ∈ 3scΨ0,−1, hence we obtain that

i[PV , χε] = 2x−2αφ(x/ε)2 (B∗B + E) + F ′
ε ,

where F ′
ε ∈ 3scΨ0,2α−1 is uniformly bounded.
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We write E = E1 + E2, where

E1 := (x2Dx)(Id −G2
ψ) ,

E2 := OpL(τ(1 − b(τ)2))G2
ψ .

By Proposition 4.2, we have that ∥E1u∥s,−1/2−δ+r ≲ ∥u∥s−1,−1/2−δ and therefore
E1u ∈ H∞,−1/2−δ+r

sc . The operator E2 has 3sc-wavefront set away from the sinks
of the Hamiltonian flow, 3scWF′(E2) ∩ 3scRsnk = ∅, therefore E2u ∈ H∞,−1/2−δ+r

sc by
Lemma 5.5.

Since commutators with φ(x/ε) decrease the order and are uniformly bounded, we
obtain that

∥x−αφ(x/ε)Bu∥2 ≲ |⟨x−αφ(x/ε)Eu, x−αφ(x/ε)u⟩| + |⟨F ′′
ε u, u⟩|

with F ′′
ε ∈ 3scΨ0,2α−1 being uniformly bounded. Taking δ = −α ∈ (0, 1/2), we observe

that the right hand side is finite and hence x−αφ(x/ε)Bu is uniformly bounded. This
implies that Bu is bounded in H0,α

sc and by Proposition 4.2, we conclude that u ∈ H0,α
sc

near γ3sc(3scRsnk), in particular, u is above threshold on 3scRsnk. This implies that u is
in Hs,−1/2−δ+r

sc for t ≫ 0 by the above threshold radial set estimates. □

With this, we can prove that under the same assumptions as in the case of the causal
propagators, PV : X s,ℓ0,ℓ+ → Ys,ℓ0,ℓ+ is invertible.

Proof of Theorem 5.1. By Lemma 5.2 and Lemma 5.4, we have that PV is a Fredholm
operator. Let u ∈ kerPV . By Proposition 5.6, u has above threshold regularity at the
entire radial set. Hence, u is an element in a causal space for PV (for any choice of s, ℓ).
By [2, Theorem 8.2], PV : X s,ℓ → Ys,ℓ is invertible, hence u ≡ 0.

Because Lemma 5.4 shows that the cokernel is contained in one of the X spaces and
P ∗
V satisfies the same estimates, the same argument proves that the cokernel is trivial

as well. □

Proposition 5.7. The inverse (PV )−1
Fey is independent of the parameters s, ℓ0, ℓ+ and

the cut-offs in the following sense: let j ∈ {1, 2} and δj > 0, Qsrc,j ∈ 3scΨsrc,δj
,

Q′
src,j, Bsrc,j ∈ 3scΨ0,0, ϕj, ψj ∈ C∞

c (R), and sj, ℓ0,j, ℓ+,j ∈ R satisfying the assumptions
of Theorem 5.1. Assume that uj ∈ H

sj ,ℓ0,j
sc and Qsrc,jGϕj

u ∈ H
sj ,ℓ+,j
sc with PV uj ∈

H
sj−1,ℓ0,j+1
sc and Q′

src,jGψj
PV uj ∈ H

sj−1,ℓ+,j+1
sc , Bsrc,jPV uj ∈ H

sj−2,ℓ+,j
sc . If PV u1 = PV u2,

then u1 = u2.
In particular, (PV )−1

Fey defines a continuous linear operator

(PV )−1
Fey : Ċ−∞(X) → C−∞(X) .
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Proof. Set u := u1 −u2. We have that PV u = 0 and we can find parameters s, ℓ0, ℓ+ ∈ R
and cut-offs such that u is in a X -space. Since PV : X → Y is invertible, it follows that
u ≡ 0. □

6. Regularity of solutions with compactly supported forcing

We now relate the propagators constructed here to the distinguished parametrices of
Duistermaat–Hörmander [6]. We follow the exposition of Gérard–Wrochna [9, 10].1

A bounded linear operator A : Ċ∞(X) → C−∞(X) can be identified with its Schwartz
kernel K ∈ C−∞(X ×X). We set

W̃F(A) := {(p, ξ, p′, ξ′) : (p, p′, ξ,−ξ′) ∈ WFcl(K)} .2

The microlocal Hadamard condition as introduced by Radzikowski [22] is the following:

Definition 6.1. A bounded linear operator E : C∞
c → C−∞ is called a Feynman

parametrix if Id −EPV and Id −PVE have smooth Schwartz kernels and

W̃F(E) = diagT ∗X\0 ∪
⋃
s≥0

Φ̃s(diagChar(P0)) .

Here, Φ̃s denotes the bicharacteristic flow acting on the left component of T ∗X × T ∗X.

Proposition 6.2. Let E be a Feynman parametrix. Then E uniquely extends to a map
C−∞
c → C−∞ and for f ∈ C−∞

c we have that

WFcl(Ef) ⊂ WFcl(f) ∪
⋃
s≥0

Φs (WFcl(f) ∩ Char(P0)) .

Proof. This follows almost directly from Hörmander [16, Theorem 8.2.13]. Denote by
KE the Schwartz kernel of E. By the condition on W̃F(E), we have that

WF′(KE)X := {(p′, ξ′) : (p, p′, 0,−ξ′) ∈ WFcl(KE) for some p ∈ X} = ∅,

hence Ef is uniquely defined for any f ∈ C−∞
c (X). Moreover, we have that WF(KE)X :=

{(p, ξ) : (p, p′, ξ, 0) ∈ WFcl(KE) for some p′ ∈ X} = ∅, so

WFcl(Ef) ⊂ W̃F(E) ◦ WFcl(f)
= WFcl(f) ∪ {(exp(sscHp)q, q) : q ∈ WFcl(f) ∩ Char(P0)} .

□

This version of the microlocal Hadamard condition is more in line with the sup-
port condition for the causal propagators. The inverse (PV )−1

Fey as constructed in
Proposition 5.7 has the same property:

1Note that the sign conventions are different, hence the flow direction is reversed.
2This set is usually denoted by WF′, but this causes confusion with the operator wavefront set.
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Theorem 6.3. Let f ∈ Ċ−∞(X), then

WFcl((PV )−1
Feyf) ⊂ WFcl(f) ∪

⋃
s≥0

Φs (WFcl(f) ∩ Char(P0)) .

This theorem follows directly from the propagation estimates in the scattering
calculus.

Proof of Theorem 1.1. Theorem 1.1 is a direct consequence of Theorem 5.1, Proposi-
tion 5.7, and Theorem 6.3. □

7. The case of bound states

We now discuss the case that one or both of the limiting spatial Hamiltonians HV±

admits bound states. This follows the treatment of bound states in our work [2, Sect.
8.2] on the causal propagators. We now assume that there are only finitely many
bound states of the limiting Hamiltonians, HV± and they are contained in the interval
(−∞,m2). Moreover, we assume throughout that

(38) 0 ̸∈ σ(HV±),

i.e., 0 is not an eigenvalue of HV± , as the corresponding solutions with linear growth in
time complicate the analysis substantially.

Setting λ(τ) =
√
m2 − τ 2, denote the eigenspace of ∆z + V± at frequency λ by

E±(λ(τ0)) =
{
w ∈ L2(Rn) : N̂ff,±(PV )(τ0)w = 0

}
.

Since the operators N̂ff,±(PV )(τ0) are scattering elliptic for |τ0| < m, such bound states
w are Schwartz:

E±(λ(τ0)) ⊂ S(Rn).
We denote the set of values τ at which there are non-trivial bound states by

(39) BV,± = {τ ∈ (−m,m) : E±(λ(τ)) ̸= {0}}.

Thus, under our assumptions, BV,± is finite and 0 ̸∈ BV,±. An element τ0 ∈ BV,+ and a
choice of w ∈ E+(λ(τ)) gives solutions

(40) uw,τ0(t, z) := eiτ0tw(z), PV+(uw,τ0) = 0,

and the same for V−; these solutions lie exactly at threshold, meaning e±iτ0tw(z) ∈
H−∞,−1/2−ϵ

sc for all ϵ > 0 and no better. They have wavefront set at τ0 ∈ W⊥
+ .

From the discussion in the introduction, it is clear which asymptotic solutions eiτ0tw(z)
should be allowed in the domain and which should be excluded (see (2)) to obtain a
Feynman type problem. Near NP we allow asymptotics as in (40) with τ0 > 0 and
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τ = m

τ = −m

Figure 2. The set BV,+ ⊂ W⊥
+

exclude those with τ0 < 0, while near NP we allow asymptotics as in (40) with τ0 < 0
and exclude those with τ0 > 0. We set

BV,src := {(f, τ) : τ ∈ BV,+, τ < 0} ∪ {(p, τ) : τ ∈ BV,−, τ > 0} ,
BV,snk := {(f, τ) : τ ∈ BV,+, τ > 0} ∪ {(p, τ) : τ ∈ BV,−, τ < 0} .

To quantify this inclusion/exclusion statement, we introduce the Fourier localizing
bound state projectors from [2, Sect. 8.2]. Specifically, following [2, Eq. 8.21], we let
K f
τ0 = Kτ0(t, z, t′, z′) denote the integral kernel of the operator which: (1) cuts off to

large positive times, (2) projects onto the space of bound states E+(λ(τ0)), and (3)
localizes in τ Fourier space near τ0. Specifically

(41) K f
τ0(t, z, t′, z′) = 1

2π

∫ ∞

−∞
ei(t−t

′)τχ≥t0(t)χτ0(τ) · Πτ0(z, z′)χ≥t0(t′)dτ.

(Here χ≥t0(t) is a cutoff to t ≥ t0, Πτ0 is the projection onto E+(λ(τ0)), and χτ0 is a
cutoff to a small neighborhood of τ0.) Near SP we use Kp

τ0 , defined similarly but with
χ≥t0 replaced by χ≤t0 which cut off to negative times.

Importantly, we have:

Lemma 7.1 (cf. [2, Lemma 8.9]). For χτ0 with sufficiently small support near τ0,

K f/p
τ0 ∈ 3scΨ−∞,0.

To ensure that localizers Q ∈ 3scΨsrc,δ as defined in Definition 4.5 do not modify
the eigenspaces E±(λ(τ)), we will assume throughout this section that WF′

ff(QGϕ) is
disjoint from the set of eigenvalues of the limiting Hamiltonian, i.e.,

WF′
ff(QGφ) ∩ BV,± = ∅ .

The construction in Lemma 4.6 can be easily modified by shrinking the support of f to
satisfy this additional condition.

Our spaces now include both the condition that the distributions be above threshold
at the sources, but also that the projections onto the appropriate bound states be above
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threshold. Specifically, if again we have s, ℓ0, ℓ+ ∈ R with ℓ0 < −1/2 < ℓ+ < 1/2 and
we let QsrcGϕ denotes the source microlocalizer from Section 4 with the modification
just mentioned, and u ∈ Hs,ℓ0 then Feynman-type distributions should satisfy

(42) QsrcGϕu ∈ Hs,ℓ+
sc , Kκ

τ u ∈ Hs,ℓ+
sc for all (κ, τ) ∈ BV,src .

These conditions can be encapsulated in a Hs,ℓ0,ℓ+
A space for appropriate A. Indeed, let

(43) Q̃src,ϕ = QsrcGϕ + Ksrc

where

(44) Ksrc :=
∑

(κ,τ)∈Bsrc

Kκ
τ .

If we (easily) arrange that all of the terms on the RHS have disjoint operator wavefront
set, then Q̃src,ψu ∈ Hs,ℓ+

sc if and only if the condition in (42) holds.
We now define our spaces as in the previous sections. Since we use the same method

for estimating the Q′
srcGψu terms, we also use the notation Q̃′

src,ϕ for the operator
as in (43) whose RHS has Q′

srcGψ replacing QsrcGϕ. Thus we assume again that
WF′(Qsrc) ⊂ Ell(Q′

src), ϕ, ψ ∈ C∞
c (R) are bump functions supported at 0 with ϕψ = ϕ,

and Bsrc ∈ 3scΨ0,0 with Rff,src ⊂ Ellff(Bsrc). Define

(45)
Ys,ℓ0,ℓ+ :=

{
v ∈ Hs−1,ℓ0+1

sc : Q̃′
src,ψv ∈ Hs−1,ℓ++1

sc , Bsrcv ∈ Hs−2,ℓ+
sc

}
,

X s,ℓ0,ℓ+ :=
{
u ∈ H

s,ℓ0,ℓ+
Q̃src,ϕ

: PV u ∈ Ys,ℓ0,ℓ+

}
.

In our treatment of bound states, for technical reasons, we assume that V − V±
decays one order faster than the assumption used above. We have the following main
theorems in the presence of bound states.

Theorem 7.2. Let s, ℓ0, ℓ+, r ∈ R with ℓ0 < −1/2 < ℓ+ < 1/2 and r ≥ max{2, ℓ+ −
ℓ0}. Let V ∈ ρmf

3scΨ1,0 be asymptotically static of order r and assume the limiting
Hamiltonians have purely absolutely continuous spectrum in [m2,∞), and finitely many
bound states in (−∞,m2) and (38) holds. Moreover, assume that

V − V ∗ ∈ 3scΨ0,−2(Rn+1) .

Then

PV : X s,ℓ0,ℓ+ → Ys,ℓ0,ℓ+

is Fredholm.

Theorem 7.3. Let s, ℓ0, ℓ+, r ∈ R with ℓ0 < −1/2 < ℓ+ < 1/2 and r ≥ max{2, ℓ+ −ℓ0}.
Let V ∈ ρmf Diff1,0

3sc be asymptotically static of order r and

• V is self-adjoint, V = V ∗,
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• limiting Hamiltonians have purely absolutely continuous spectrum in [m2,∞),
and finitely many bound states in (0,m2), in particular HV± > 0.

then PV : X s,ℓ0,ℓ+ → Ys,ℓ0,ℓ+ is invertible. We denote the inverse by (PV )−1
Fey and for

f ∈ Ċ−∞ the function (PV )−1
Feyf ∈ C−∞ is independent of the choice of parameters

s, ℓ0, ℓ+ and microlocal cutoff QGϕ. For any f ∈ Ċ−∞, we have
3scWF((PV )−1

Feyf) ⊂ 3scWF(f) ∪
⋃
s≥0

3scΦs

(
3scWF(f) ∩ 3scChar(P0)

)
∪ 3scRsnk ∪ BV,snk .

The same conclusion holds if V = V ∗ ∈ ρmf Diff1
3sc is globally static, i.e., V = V (x).

In particular the positivity condition HV > 0 is not needed in the static case, though we
still assume 0 ̸∈ BV .

To prove the Fredholm result we again use a global Fredholm estimate, and the main
result we use from our previous work regarding the K f/p

τ is the following lemma.

Lemma 7.4. Let ℓ ∈ R, τ0 ∈ BV,±. Below we state the estimate near NP, but the same
is true near SP with appropriate +’s replaced by −’s.

Below threshold: Assume ℓ < −1/2. Then for any s,M,N ∈ R there is C > 0 such
that, provided K f

τ0PV u ∈ Hs,ℓ+1
sc , then we have K f

τ0u ∈ Hs,ℓ
sc

(46) ∥K f
τ0u∥s,ℓ ≤ C(∥K f

τ0PV u∥s,ℓ+1 + ∥u∥−N,−M) .

Above threshold: Assume ℓ > −1/2. For any s, ℓ′,M,N ∈ R with ℓ > ℓ′ > −1/2,
there is C such that, if K f

τ0u ∈ Hs,ℓ′
sc and PVK f

τ0u ∈ Hs,ℓ+1
sc , then K f

τ0u ∈ Hs,ℓ
sc and

(47) ∥K f
τ0u∥s,ℓ ≤ C(∥K f

τ0PV u∥s,ℓ+1 + ∥K f
τ0u∥−N,ℓ′ + ∥u∥−N,−M) .

Proof of Fredholm property. To get the closed range and finite dimensional kernel state-
ment, we can use a global Fredholm estimate in Lemma 5.2 but for the X ,Y spaces in
(45), where now

∥v∥Ys,ℓ0,ℓ+ ∼ ∥v∥s−1,ℓ0+1 + ∥Q′
srcGψv∥s−1,ℓ++1 + ∥Bsrcv∥s−2,ℓ+ + ∥Ksrcv∥s−1,ℓ++1 .

As in the case of the causal propagators [2, p. 91], we modify the partition of unity
by introducing additional microlocalizers B5,± and B6,± such that B5,± is elliptic on
(−m+ ε′, δ′) ⊂ W⊥

± and B6,± is elliptic on (−δ′,m− ε′). For the microlocalizers B5,±
and B6,±, we use the estimates from Lemma 7.4. We arrive at the estimate

∥u∥X s,ℓ0,ℓ+ ≲ ∥PV u∥Ys,ℓ0,ℓ+ + ∥u∥−N,−M

from which we deduce finite dimensionality of the kernel and that the range is closed.
By the same argument as in Lemma 5.4, we obtain that cokernel is finite dimensional

as well, which implies that PV is Fredholm as claimed. □
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Proposition 7.5. Let V satisfy the assumptions in Theorem 7.3. Then, for some
δ > 0,

kerX s,ℓ0,ℓ+ PV ⊂ Hs,−1/2+δ
sc .

Proof. The proof is identical to that of Proposition 5.6 with the modification that,
for the operator B = OpL(τ 1/2b(τ))Gψ, we must have b ≡ 1 on BV,snk ∪ Rff, snk and
supp b ∩ (−∞, 0] = ∅. This is easily arranged, for example by choosing c > 0 with
c < min{|τ0| : τ0 ∈ BV,snk}. Then for example at NP we can take b(τ) ≡ 1 for
c ≤ τ ≤ m+ c and b(τ) = 0 for τ < c/2 and τ > m+ 2c. □

Proof of invertibility. We now assume that the spatial Hamiltonians satisfy

(48) HV± > 0.

The proof that the kernel and cokernel are trivial is the same as for the case with no
bound states. By Proposition 7.5, we know that every u ∈ kerPV is a Schwartz function
and therefore satisfies the above threshold decay rate on the entire radial set. Hence u
is an element in a causal Sobolev space X s,ℓ for any choice of s, ℓ and by the theorem
for causal propagators [2, Theorem 8.3] the operator PV : X s,ℓ → Ys,ℓ is invertible and
therefore u ≡ 0.

The uniqueness and the wavefront property follow from the same arguments as in
the case of no bound states.

In the static case one sees directly that there are no global elements in the kernel or
cokernel as their projection onto the bound states would have the excluded asymptotics
at one of the two time-like infinities. □
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