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Abstract. This expository note gives a digest version of Hörmander’s propagation of singularities
theorem for the wave equation.

1. Introduction

Let P = □ = −∂2
x0

+ ∂2
x1

+ · · · + ∂2
xn

be the flat D’Alembertian on Rd, d = n + 1. We use
coordinates x = (x0, . . . , xn). Hörmander’s propagation of singularities result for solutions to
□u = 0 says that if u has a given degree of Sobolev regularity at a given position and direction in
spacetime (x, ξ̂) ∈ Rd × Sd−1, then it must have the same Sobolev regularity at all (x′, ξ̂) such that

x′ is on the light ray emanating from x with direction ξ̂.

To make precise the notion of a given degree of Sobolev regularity at a given position and
direction, we introduce the following definitions. For m ∈ R, let Sm = Sm(Rd) be the Kohn–
Nirenberg class of symbols, defined by the condition that a ∈ Sm means a ∈ C∞(Rd ×Rd) and the
partial derivatives of a obey the bounds

|∂α
x ∂

β
ξ a(x, ξ)| ≤ Cα,β⟨ξ⟩m−|β|.

To each such symbol we associate a pseudodifferential operator A given by

Au(x) =
1

(2π)d

∫ ∫
ei(x−y)·ξa(x, ξ)u(y) dy dξ. (1)

The set of A corresponding to some a ∈ Sm is denoted Ψm. If A ∈ Ψm, then A is a bounded
operator from Hk to Hk−m for every k. For a proof of this general statement see Corollary 4.32
of [Hi], but note the following simpler cases: if a(x, ξ) = a(x) is independent of ξ then A is the
multiplier u(x) 7→ a(x)u(x), and if a(x, ξ) = ⟨ξ⟩m then ∥Au∥L2 is the usual norm on the Sobolev
space Hm given in terms of the Fourier transform.

To each a ∈ Sm which is compactly supported in x, we associate an essential support at fiber
infinity1 (i.e. a support as the frequency ξ tends to infinity), denoted by ess supp(a), and defined

as follows: (x, ξ̂) is not in the essential support if and only if there is a neighborhood U ⊂ Rd×Sd−1

of (x, ξ̂), such that the partial derivatives of a obey the bounds

|∂α
x ∂

β
ξ a(x

′, ξ′)| ≤ Cα,β,N ⟨ξ′⟩−N

for all N when (x′, ξ′/|ξ′|) ∈ U .

We say a ∈ Sm is elliptic at (x, ξ̂) if there are positive constants C and ε, and a neighborhood

U ⊂ Rd × Sd−1 of (x, ξ̂), such that

|a(x′, ξ′)| ≥ ε⟨ξ′⟩m,

1One can extend this definition to symbols which need not be compactly supported in x: see Chapter 6 of [Hi] or
Section E.2.1 of [DyZw].
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when (x′, ξ′/|ξ′|) ∈ U and |ξ| ≥ C. The set of points in Rd × Sd−1 at which a is elliptic is denoted
ell(a).

Given symbols b, e, and g, we say that b is controlled by e through g if for each point (x, ξ̂)

in ess supp(b), there is a light ray contained in ell(g) which starts at some point (x′, ξ̂′) in ell(e)

and ends at (x, ξ̂).A light ray is an integral curve of the Hamilton vector field HP lying in the

characteristic set Σ(P ) = {(x, ξ̂) ∈ Rd × Sd−1 : ξ̂20 −
∑

ξ̂2j = 0}. Here the Hamilton vector field is
given by

HP = 2ξ0∂x0 − 2ξ1∂x1 − · · · − 2ξn∂xn .

Note that the Hamilton vector field has no ξ derivatives, so if (x, ξ̂) is connected by a light ray to

(x′, ξ̂′), then ξ̂ = ξ̂′. See Figure 1.

ell(g)

ell(e)

ess supp(b)

Figure 1. The horizontal coordinate s is chosen so that the Hamilton vector field
is ∂s, thus the arrows are integral curves of the Hamilton vector field.

We are now ready to state Hörmander’s propagation of singularities theorem.

Theorem. Let b ∈ Sk, e ∈ Sk, g ∈ Sk−1 for some real k be compactly supported in x. Suppose
u ∈ H−N , Eu ∈ L2, and GPu ∈ L2. If b is controlled by e through g, then Bu ∈ L2 and there is a
constant C (independent of u) such that

∥Bu∥L2 ≤ C(∥Eu∥L2 + ∥GPu∥L2 + ∥u∥H−N ). (2)

Since B and E both map Hk → L2, this says in particular that if we have a solution to □u = 0
which is in some Sobolev space H−N , and if we happen to know that it is in some better Sobolev
space Hk in the positions and directions given by the elliptic set of e, then it is also in this
better Sobolev space Hk at points and directions emanating from that set. In this sense (2) is a
propagation of regularity estimate. Since a singularity is a place where regularity is lacking, we
also call (2) a propagation of singularities estimate.

As b is compactly supported in x, without loss of generality we can take e and g also to have
compact support in x and then u need only lie in H−N locally. In particular, if χ ∈ C∞

c satisfies
χ ≡ 1 on the support of g, then

∥B0u∥ ≤ C (∥Eu∥+ ∥GPu∥+ ∥χu∥H−N ) .
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For example, let u = δ(x0 − x1). Then u ∈ Hs
loc if and only if s < 1/2. Microlocally, however,

one can show that, for almost all (x, ξ̂), we have u ∈ Hs at (x, ξ̂) for all s. More precisely, u is in

these better Sobolev spaces at (x, ξ̂) if and only if x0 ̸= x1 or |ξ̂0| ≠ 1/
√
2 or ξ̂1 ̸= −ξ̂0.

This theorem was first proved by using a Fourier integral operator to microlocally conjugate P
to the simpler operator ∂x0/i, for which the theorem is easy: see [Hö1] and [DuHö], specifically
Section 6 of the latter paper. The proof we present here uses a positive commutator argument with
a pseudodifferential commutant. It is a special case of Hörmander’s proof in Section 3.5 of [Hö2].
Other presentations of this proof in more general settings than the one here can be found in Section
E.4 of [DyZw] and Section 8 of [Hi].

The crux of the proof involves bounding the pairing

Im⟨Au,APu⟩ = 1

2i
(⟨PA∗Au, u⟩ − ⟨A∗APu, u⟩) =

〈
1

2i
[P,A∗Au]u, u

〉
. (3)

for a well-chosen A ∈ Ψk− 1
2 . We bound (3) from below via a straightforward application of Cauchy–

Schwarz, and from above by arranging that the commutator [P,A∗A]/i is almost negative.

As we will see below in Section 2, the principal symbol of [P,A∗A]/i is HP (|a|2): this is the
fundamental relationship between commutators and Hamilton vector fields. We will see that to
arrange that [P,A∗A]/i is almost negative in the right sense we must arrange that HP (|a|2) is
negative on ess supp(b) \ ell(e), i.e. that |a|2 is decreasing along the Hamilton flow in this region.
Such an a is called an escape function, a terminology which goes back to [MoRaSt]. Constructing
an escape function is straightforward here because of the simple geometry of our spacetime.

Theorem 1 has many generalizations. Most directly, a nearly identical proof strategy applies
to operators of real principal type that are not necessarily self-adjoint: i.e. only the principal
symbol of P needs to be real, and P can be a variable coefficient differential operator or even a
pseudodifferential operator. Constructing an escape function is then done by locally straightening
out the Hamilon flow. The additional error term arising in equation (3) from P−P ∗ is a lower order
term. One can also treat cases where the principal part of P is not real, provided the imaginary
part has a sign; this sign dictates the direction in which we can propagate regularity.

A common use for such propagation results is to help obtain global estimates for solutions of
wave-like equations. As an example, in the non-trapping setting, these estimates let you propagate
regularity from where it is a priori known (e.g., in the distant past for the forward propagator).
Closing the estimate, however, typically requires additional estimates, which can be more compli-
cated in settings with trapping.

2. Preliminaries from microlocal analysis

The important calculations take place on the level of symbols. To translate the results into
statements about operators, we use the following formula for the symbol of the composition of two
pseudodifferential operators. If A1 ∈ Ψm1 and A2 ∈ Ψm2 have symbols a1 and a2 respectively, then
the composition A1A2 belongs to Ψm1+m2 and has symbol given by a3 ∈ Sm1+m2 such that

r := a3 − a1a2 −
1

i
∂ξa1 · ∂xa2 ∈ Sm1+m2−2, (4)

and ess supp(r) ⊂ ess supp(a1) ∩ ess supp(a2).

We define the principal symbol σm(A) of an operator A ∈ Ψm to be the equivalence class of
its symbol a in Sm/Sm−1. An immediate consequence of the composition formula above is the
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observation that

σm1+m2(A1A2) = σm1(A1)σm2(A2).

Similarly, for A1 ∈ Ψm1 and A2 ∈ Ψm2 , the commutator [A1, A2] = A1A2−A2A1 lies in Ψm1+m2−1

and satisfies

σm1+m2−1 ([A1, A2]) =
1

i

(
∂σm1(A1)

∂ξ

∂σm2(A2)

∂x
− ∂σm2(A2)

∂ξ

∂σm1(A1)

∂x

)
=

1

i
Hσm1 (A1) (σm2(A2)) ,

where the Hamilton vector field Hσm1 (A1) is defined by the equation.

Concretely, the principal symbol of P = □ is

σ2(P ) = ξ20 − ξ21 − · · · − ξ2n,

and its Hamilton vector field is

HP = 2ξ0∂x0 − 2ξ1∂x1 − · · · − 2ξn∂xn .

We also use the following adjoint formula: If A ∈ Ψm has symbol a, then the adjoint operator
has symbol a′ ∈ Sm obeying

a′ − a ∈ Sm−1.

The composition formula can be found in Theorem 4.16 of [Hi] and the adjoint formula can be found
in Corollary 4.13 of [Hi]. They are easy to check for differential operators, i.e. in the case that the
symbols are polynomials in ξ. In general they may be checked by writing out the definitions and
Taylor expanding.2

Our first application of the composition formula is to the following elliptic estimate.

Lemma 1. Let a ∈ Sm and a′ ∈ Sm′
be such that a is compactly supported in x and ess supp a ⊂

ell(a′). For any k and N , if u ∈ H−N and A′u ∈ Hk+m−m′
, then Au ∈ Hk and there is C

(independent of u) such that

∥Au∥Hk ≤ C(∥A′u∥Hk+m−m′ + ∥u∥H−N ). (5)

Proof. Because a′ is elliptic on the essential support of a, there exists g ∈ Sm−m′
such that ga′ = a

when ξ is large.3 By the composition formula (4), there is R1 ∈ Ψm−1 such that

GA′ = A+R1.

Since G : Hk+m−m′ → Hk is bounded, it follows that

∥Au∥Hk ≤ C(∥A′u∥Hk+m−m′ + ∥R1u∥Hk).

2Observe that if A3 = A1A2 then by definition A3u(x) is given by (1) with a(x, ξ) replaced by

a3(x, ξ) =
1

(2π)d

∫ ∫
e−ix·ξeix·ηe−iz·ηeiz·ξa1(x, η)a2(z, ξ) dη dz =

1

(2π)d

∫ ∫
e−iw·ζa1(x, ξ + ζ)a2(x+ w, ξ) dζ dw,

where we used e−ix·ξeix·ηe−iz·ηeiz·ξ = ei(x−z)·(η−ξ), substituted w = z − x and ζ = η − ξ, and ignored issues of
convergence. To deduce the expansion (4), Taylor expand

a1(x, ξ + ζ) = a1(x, ξ) + ζ · ∂ξa1(x, ξ) + · · · , a2(x+ w, ξ) = a2(x, ξ) + w · ∂xa2(x, ξ) + · · · ,

and use the fact that 1
(2π)d

∫ ∫
e−iwζwαζβ dζ dw = i|β|

∫
wα∂βδ(w)dw which is (−i)|β| if α = β and 0 otherwise. The

convergence issues can be handled by a partition of unity, and the adjoint formula can be proved in the same way:
see Chapters 8 and 9 of [Wo] for more.

3To construct such a g, for C as in the definition of ellipticity, let g(x, ξ)a′(x, ξ) = (1−χC(ξ))ψ(x, ξ̂)a(x, ξ), where
χC ∈ C∞

c (Rd) is identically 1 on the ball of radius C centered at 0, ψ ∈ C∞(Rd × Sd−1), suppψ ⊂ ell(a′), and ψ = 1
near ess supp(a).



PROPAGATION OF SINGULARITIES FOR THE WAVE EQUATION 5

This gives (5) when −N = k+m− 1. To get it for larger values of N we apply the same reasoning
with A replaced by R1. That gives R2 ∈ Ψm−2 such that

∥R1u∥Hk ≤ C(∥A′u∥Hk+m−1−m′ + ∥R2u∥Hk),

which implies (5) when −N = k +m− 2. Repeating this argument gives (5) for arbitrary N . □

We further require G̊arding’s inequality, which states that operators with non-negative principal
symbols are non-negative to leading order. In other words, if A ∈ Ψm is compactly supported in x
and has σm(A) ≥ 0 for |ξ| sufficiently large, then there is some constant C so that

Re⟨Au, u⟩ ≥ −C∥u∥2
H

m−1
2

.

The proof of this general form of G̊arding’s inequality is somewhat involved (see Theorem 18.1.14
of [Hö3]), but is straightforward when the principal symbol of A is a square (or sum of squares).
Indeed, if σm(A) = b2, then by the composition and adjoint formulas, we may write A = B∗B+R,

where B ∈ Ψ
m
2 and R ∈ Ψm−1. It then follows that

Re⟨Au, u⟩ = ∥Bu∥2 + ⟨Ru, u⟩.

The first term on the right side is non-negative. Writing R as the composition of two operators of

order m−1
2 (such as R = (I −∆)

m−1
4 ◦ (I −∆)−

m−1
4 R) then shows that this last term is bounded

below by −C∥u∥2
H

m−1
2

for some C. Observe further that combining this proof with the elliptic

estimate (5) shows that if A ∈ Ψm is compactly supported in x, has non-negative principal symbol,
and B ∈ Ψ0 has ess supp a ⊂ ell(b), then for any N there is a constant C with

Re⟨Au, u⟩ ≥ −C∥Bu∥2
H

m−1
2

− C∥u∥2H−N . (6)

3. Proof of theorem

In this section we use the notation (z, ζ) for a variable point of Rd×Rd, to avoid a typographical

collision with (x, ξ̂) and (x′, ξ̂′) which we use to denote points in the essential support or elliptic
set of a particular symbol.

The main lemma in the proof of the theorem is the following similar but weaker statement.

Lemma 2. Let b ∈ Sk, e ∈ Sk, g ∈ Sk−1 for some real k be compactly supported in x. Let
Λs = (I −∆Rd)s/2 ∈ Ψs. If b is controlled by e through g, then there is a constant C such that

∥Bu∥2 ≤ C
(
∥Λ1−kGu∥2

Hk− 1
2
+ ∥Eu∥2 + ∥GPu∥2 + ∥u∥2H−N

)
, (7)

for all functions u ∈ Hk with Pu ∈ Hk−1.

Proof. We assume without loss of generality that ess supp(e) ⊂ ell(g); this can be arranged to hold
without changing the hypotheses by shrinking the essential support of e. An application of the
elliptic estimate (5) then yields the result with the original E.

Similarly, by a partition of unity argument, it is enough to prove that, for each point (x, ξ̂) in

ess supp(b), there is b1 ∈ Sk which is elliptic at (x, ξ̂) such that (7) holds with B replaced by B1.

For A ∈ Ψk− 1
2 to be specified later, consider the pairing

Im⟨Au,APu⟩ = 1

2i
(⟨PA∗Au, u⟩ − ⟨A∗APu, u⟩) =

〈
1

2i
[P,A∗Au]u, u

〉
.
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1. We first bound the pairing below. By Cauchy–Schwarz, for any ϵ > 0 we have

Im⟨Au,APu⟩ ≥ − 1

4ϵ
∥APu∥2

H−1/2 − ϵ∥Au∥2
H1/2 .

To write this bound in terms of the L2 pairing we use ∥Λsu∥L2 = ∥u∥Hs . That gives〈
1

2i
[P,A∗Au]u, u

〉
≥ − 1

4ϵ
∥Λ−1/2APu∥2L2 − ϵ∥Λ1/2Au∥2L2 . (8)

2. We next bound the pairing above. Recall that 1
2i [P,A

∗A] ∈ Ψ2k and has principal symbol

given by 1
2HP (a

2) = aHp(a). We will construct a in such a way that there exist a compact set
K ⊂ ell(e) and a γ > 0 such that

−aHp(a)− γ
(
⟨ζ⟩1/2a

)2
≥ 0, off of K. (9)

Hence there exists C large enough that4

Ce2 − aHp(a)− γ
(
⟨ζ⟩1/2a

)2
≥ 0.

In our construction of a we will also obtain

ess supp(a) ⊂ ell(g). (10)

Using the version of the G̊arding inequality stated in (6)5 then yields〈
1

2i
[P,A∗A]u, u

〉
≤ C∥Eu∥2 + C∥Λ1−kGu∥2

Hk− 1
2
+ C∥u∥H−N − γ∥Λ1/2Au∥2. (11)

3. We now combine the two bounds on the pairing. Putting together (8) and (11) and taking
ϵ = γ/2 yields

∥Λ1/2Au∥2 ≤ C
(
∥Λ1−kGu∥2

Hk− 1
2
+ ∥Eu∥2 + ∥Λ−1/2APu∥2 + ∥u∥2H−N

)
.

To deduce (7) we use the fact that the elliptic estimate (5) and (10) imply ∥Λ−1/2APu∥2 ≤
C(∥GPu∥2 + ∥u∥2

H−N ), and moreover we can use Λ1/2A as B1 provided we construct a so that

(x, ξ̂) ∈ ell(a). (12)

Thus is remains to construct a ∈ Sk− 1
2 such that (9), (10), and (12) all hold.

4. To construct a, use the fact that there is a light ray contained in ell(g) starting at some

(x′, ξ̂) ∈ ell(e) ending at (x, ξ̂), and this light ray can be parametrized by

t 7→
(
x0 ± tξ̂0, xj ∓ tξ̂j , ξ̂

)
,

with the choice of sign depending on whether the flow from (x′, ξ̂) to (x, ξ̂) is in the direction the
flow of the Hamilton vector field or its opposite. We assume for the argument below that it is with
the direction of the Hamilton vector field (and hence the top sign is chosen).

4In our setting, γ > 0 can be arbitrary, but when dealing with error terms γ must be taken sufficiently large.
5If we want to avoid invoking the full strength of the sharp G̊arding inequality as in Theorem 18.1.14 of [Hö3], we

must check that the quantity Ce2 − aHp(a)− γ⟨ζ⟩a2 is a sum of squares. For that, take ψ ∈ S0 such that ψ = 0 near
K and ψ = 1 near the complement of ell(e), and use (15) to write Ce2 − aHp(a)− γ⟨ζ⟩a2 = a21 + a22, where

a1 = e
√
C + (1− ψ2)(−aHp(a)− γ⟨ζ⟩a2)/e2, a2 = ψ⟨ζ⟩kχ

√
(−2φ′ − γφ)φ.

To see that a1 is smooth use the fact that the square root of a positive function is smooth. To see that a2 is smooth,
use the explicit formula for φ.
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Recall that (x, ξ̂) lies on a light ray, and because light rays must lie in the characteristic set of
P , ζ0 ̸= 0 on any light ray. Using also the fact that ell(g) and ell(e) are open sets, fix t0 > 0, δ > 0,

and an open neighborhood U ⊂ Rd−1×Sd−1 of (x, ξ̂) such that ζ̂0 is non-vanishing on U , such that

t ∈ (−t0 − δ, δ) and (y1, . . . , yn, ζ̂) ∈ U =⇒ (x0 + tζ̂0, yj − tζ̂j , ζ̂) ∈ ell(g), (13)

and such that

t ∈ (−t0 − δ, t0 + δ) and (y1, . . . , yn, ζ̂) ∈ U =⇒ (x0 + tζ̂0, yj − tζ̂j , ζ̂) ∈ ell(e). (14)

We fix a real function χ1 ∈ C∞
c (U) that is identically 1 on a neighborhood of (x, ξ̂), and put

χ = χ2
1. Let

φ(t) = exp(−γt+ (t− δ)−1 − (t+ t0 + δ)−1), when − t0 − δ < t < δ,

and φ(t) = 0 otherwise.

−t0 − δ −t0 0 δ

Figure 2. A graph of φ, from https://www.desmos.com/calculator/tqmurytqe9.

Let

a(z, ζ) = φ(t)χ
(
z1 + ζ̂1t , . . . , zn + ζ̂nt , ζ̂

)
⟨ζ⟩k−

1
2 ,

where t = t(z, ζ) = (z0 − x0)/ζ̂0. The expression for a is well-defined as ζ̂0 ̸= 0 on the support of χ

and it is straightforward to check that a ∈ Sk− 1
2 . We write more shortly a = φχ⟨ζ⟩k−

1
2 .

Now (10) follows from the property (13) of U , and (12) follows from the fact that a⟨ζ⟩−k+ 1
2 ̸= 0

at (x, ξ). It remains to check (9), and for this we compute aHP (a).

The computation is made straightforward by the fact that we have defined a to be the product
of φ(t) and a function which is constant along flows of HP :

aHP (a) = 2
ζ0

ζ̂0
φ′φχ2⟨ζ⟩2k−1,

which, has principal symbol

2⟨ζ⟩2kφ′φχ2,

because ζ0/ζ̂0 = |ζ|. Thus the principal symbol of −aHp(a)− γ⟨ζ⟩a2 is

−(2φ′ + γφ)φχ2⟨ζ⟩2k, (15)

https://www.desmos.com/calculator/tqmurytqe9
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and the set where this is negative is contained in the set where −t0 − δ ≤ t ≤ −t0 and in the
support of χ, i.e. by the property (14) of U above it is contained in a compact subset of ell(e). □

With Lemma 2 in hand, we now turn our attention to the proof of Theorem 1. We proceed by
removing the first term of the right side of the estimate (7) with an inductive argument and then
finally relax the regularity hypothesis with a regularization argument.

We first consider the inductive argument. Indeed, we claim that if b is controlled by e through
g, then for any m, there is a constant so that

∥Bu∥2 ≤ C
(
∥Λ1−kGu∥2

Hk−m
2
+ ∥Eu∥2 + ∥GPu∥2 + ∥u∥2H−N

)
. (16)

Lemma 2 and the regularization argument above provide the base case m = 1.

Suppose now that the inequality (16) holds for m. As ell(g) and ell(e) are open and ess supp(b)
is closed, we may shrink the support of g to find a new symbol g1 ∈ Sk−1 so that

(1) b is controlled by e through g1, and

(2) ⟨ζ⟩1−
m
2 g1 is controlled by ⟨ζ⟩−

m
2 e through ⟨ζ⟩−

m
2 g.

The inductive hypothesis yields the estimate

∥Bu∥2 ≤ C
(
∥Λ1−kG1u∥2

Hk−m
2
+ ∥Eu∥2 + ∥G1Pu∥2 + ∥u∥2H−N

)
.

We then apply Lemma 2 to ⟨ζ⟩1−
m
2 g1 ∈ Sk−m

2 , which is controlled by ⟨ζ⟩−
m
2 e ∈ Sk−m

2 through

⟨ζ⟩−
m
2 g ∈ Sk−1−m

2 , yielding

∥Λ1−m
2
G1u∥2 ≤ C

(
∥Λ1−kGu∥2

Hk−m+1
2

+ ∥Λ−m
2
Eu∥2 + ∥Λ−m

2
GPu∥2 + ∥u∥2H−N

)
.

We note first that for any v ∈ Hr, ∥Λrv∥ = ∥v∥Hr . One consequence is the estimate

∥Λ− 1
2
v∥ = ∥v∥

H− 1
2
≤ ∥v∥L2 .

Similarly,

∥Λ1−kG1u∥
Hk− 1

2
= ∥Λ 1

2
G1u∥,

so that combining the two estimates yields

∥Bu∥2 ≤ C
(
∥Λ1−kGu∥2

Hk−m+1
2

+ ∥Eu∥2 + ∥GPu∥2 + ∥u∥2H−N

)
,

finishing the inductive step.

For m ≥ 2N + 2k,

∥Λ1−kGu∥
Hk−m

2
≤ C∥u∥H−N ,

allowing us to remove this term.

Our regularization argument roughly follows Exercises E.10 and E.31 from [DyZw]. We introduce,
for fixed r > 0, a family of regularizing operators depending on a parameter ϵ ∈ (0, 1):

Λϵ,−r = (1− ϵ2∆Rd)−r/2.

The inverse of Λϵ,−r is given by

Λϵ,r = (1− ϵ2∆)r/2.

For each ϵ > 0, Λϵ,−r ∈ Ψ−r with symbol ⟨ϵζ⟩−r; regarded as a subset of S0, this family of symbols is
uniformly bounded in ϵ. In particular, Λϵ,−r ∈ Ψ−r is a uniformly bounded family in Ψ0 converging
to the identity map in Ψs for any s > 0. Similarly, Λϵ,r ∈ Ψr is a uniformly bounded family in Ψr.
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One useful application of these operators forms the backbone of the regularization argument.
The monotone convergence theorem implies that if u ∈ Hs−r and ∥Λϵ,−ru∥Hs is uniformly bounded
in ϵ, then in fact u ∈ Hs.

For each ϵ, the symbol ⟨ϵζ⟩−rb is controlled by ⟨ϵζ⟩−re through ⟨ϵζ⟩−rg. Viewing these symbols
as lying in Sk, Sk, and Sk−1, respectively, we obtain estimates of the form

∥Λϵ,−rBu∥2 ≤ C
(
∥Λϵ,−rEu∥2 + ∥Λϵ,−rGPu∥2 + ∥u∥2H−N

)
,

provided that Λϵ,−ru ∈ Hk and Λϵ,−rPu ∈ Hk−1. Because the symbols above are uniformly

bounded in Sk, Sk, and Sk−1, an inspection of the proof of Lemma 2 and the inductive argument
shows that the constant can be taken to be uniform in ϵ. As u lies in H−N for some N large
enough, we may fix r (depending on N) so that Λϵ,−ru ∈ Hk and Λϵ,−rPu ∈ Hk−1 and then obtain
the bound

∥Λϵ,−rBu∥2 ≤ C
(
∥Eu∥2 + ∥GPu∥2 + ∥u∥2H−N

)
.

In particular, ∥Λϵ,−rBu∥ is uniformly bounded in ϵ and so Bu ∈ L2, finishing the proof.
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